1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      PTPN2 Regulates the Interferon Signaling and Endoplasmic Reticulum Stress Response in Pancreatic β-Cells in Autoimmune Diabetes

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Type 1 diabetes (T1D) results from autoimmune destruction of β-cells in the pancreas. Protein tyrosine phosphatases (PTPs) are candidate genes for T1D and play a key role in autoimmune disease development and β-cell dysfunction. Here, we assessed the global protein and individual PTP profiles in the pancreas from nonobese mice with early-onset diabetes (NOD) mice treated with an anti-CD3 monoclonal antibody and interleukin-1 receptor antagonist. The treatment reversed hyperglycemia, and we observed enhanced expression of PTPN2, a PTP family member and T1D candidate gene, and endoplasmic reticulum (ER) chaperones in the pancreatic islets. To address the functional role of PTPN2 in β-cells, we generated PTPN2-deficient human stem cell–derived β-like and EndoC-βH1 cells. Mechanistically, we demonstrated that PTPN2 inactivation in β-cells exacerbates type I and type II interferon signaling networks and the potential progression toward autoimmunity. Moreover, we established the capacity of PTPN2 to positively modulate the Ca2+-dependent unfolded protein response and ER stress outcome in β-cells. Adenovirus-induced overexpression of PTPN2 partially protected from ER stress–induced β-cell death. Our results postulate PTPN2 as a key protective factor in β-cells during inflammation and ER stress in autoimmune diabetes.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Generation of functional human pancreatic β cells in vitro.

          The generation of insulin-producing pancreatic β cells from stem cells in vitro would provide an unprecedented cell source for drug discovery and cell transplantation therapy in diabetes. However, insulin-producing cells previously generated from human pluripotent stem cells (hPSC) lack many functional characteristics of bona fide β cells. Here, we report a scalable differentiation protocol that can generate hundreds of millions of glucose-responsive β cells from hPSC in vitro. These stem-cell-derived β cells (SC-β) express markers found in mature β cells, flux Ca(2+) in response to glucose, package insulin into secretory granules, and secrete quantities of insulin comparable to adult β cells in response to multiple sequential glucose challenges in vitro. Furthermore, these cells secrete human insulin into the serum of mice shortly after transplantation in a glucose-regulated manner, and transplantation of these cells ameliorates hyperglycemia in diabetic mice. Copyright © 2014 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells.

            Transplantation of pancreatic progenitors or insulin-secreting cells derived from human embryonic stem cells (hESCs) has been proposed as a therapy for diabetes. We describe a seven-stage protocol that efficiently converts hESCs into insulin-producing cells. Stage (S) 7 cells expressed key markers of mature pancreatic beta cells, including MAFA, and displayed glucose-stimulated insulin secretion similar to that of human islets during static incubations in vitro. Additional characterization using single-cell imaging and dynamic glucose stimulation assays revealed similarities but also notable differences between S7 insulin-secreting cells and primary human beta cells. Nevertheless, S7 cells rapidly reversed diabetes in mice within 40 days, roughly four times faster than pancreatic progenitors. Therefore, although S7 cells are not fully equivalent to mature beta cells, their capacity for glucose-responsive insulin secretion and rapid reversal of diabetes in vivo makes them a promising alternative to pancreatic progenitor cells or cadaveric islets for the treatment of diabetes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genome-wide association study and meta-analysis finds over 40 loci affect risk of type 1 diabetes

              Type 1 diabetes (T1D) is a common autoimmune disorder that arises from the action of multiple genetic and environmental risk factors. We report the findings of a new genome-wide association study of T1D, combined in a meta-analysis with two previously published studies. The total sample set included 7,514 cases and 9,045 reference samples. Forty-one distinct genomic locations provided evidence for association to T1D in the meta-analysis (P < 10-6). After excluding previously reported associations, 27 regions were further tested in an independent set of 4,267 cases, 4,463 controls and 2,319 affected sib-pair (ASP) families. Of these, 18 regions were replicated (P < 0.01; overall P < 5 × 10-8) and four additional regions provided nominal evidence of replication (P < 0.05). The many new candidate genes suggested by these results include IL10, IL19, IL20, GLIS3, CD69 and IL27.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Diabetes
                American Diabetes Association
                0012-1797
                April 01 2022
                January 19 2022
                April 01 2022
                January 19 2022
                : 71
                : 4
                : 653-668
                Affiliations
                [1 ]Signal Transduction and Metabolism Laboratory, Laboratoire de Gastroentérologie Expérimental et Endotools, Université Libre de Bruxelles, Brussels, Belgium
                [2 ]Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
                [3 ]Netherlands Proteomics Centre, Utrecht, the Netherlands
                [4 ]Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
                [5 ]Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
                [6 ]Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, Campus Gasthuisberg O&N 1, KU Leuven, Leuven, Belgium
                [7 ]IRIBHM, Université Libre de Bruxelles, Brussels, Belgium
                [8 ]University of Melbourne Centre for Cancer Research, University of Melbourne, Melbourne, Victoria, Australia
                Article
                10.2337/db21-0443
                35044456
                93aedc6e-3460-470d-86de-6ba55bb5d32b
                © 2022

                https://www.diabetesjournals.org/content/license

                History

                Comments

                Comment on this article