24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diversity and relative abundance of the bacterial pathogen, Flavobacterium spp., infecting reproductive ecotypes of kokanee salmon

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Understanding the distribution and abundance of pathogens can provide insight into the evolution and ecology of their host species. Previous research in kokanee, the freshwater form of sockeye salmon ( Oncorhynchus nerka), found evidence that populations spawning in streams may experience a greater pathogen load compared with populations that spawn on beaches. In this study we tested for differences in the abundance and diversity of the gram-negative bacteria, Flavobacterium spp., infecting tissues of kokanee in both of these spawning habitats (streams and beaches). Molecular assays were carried out using primers designed to amplify a ~200 nucleotide region of the gene encoding the ATP synthase alpha subunit ( AtpA) within the genus Flavobacterium. Using a combination of DNA sequencing and quantitative PCR (qPCR) we compared the diversity and relative abundance of Flavobacterium AtpA amplicons present in DNA extracted from tissue samples of kokanee collected from each spawning habitat.

          Results

          We identified 10 Flavobacterium AtpA haplotypes among the tissues of stream-spawning kokanee and seven haplotypes among the tissues of beach-spawning kokanee, with only two haplotypes shared between spawning habitats. Haplotypes occurring in the same clade as F. psychrophilum were the most prevalent (92% of all reads, 60% of all haplotypes), and occurred in kokanee from both spawning habitats (streams and beaches). Subsequent qPCR assays did not find any significant difference in the relative abundance of Flavobacterium AtpA amplicons between samples from the different spawning habitats.

          Conclusions

          We confirmed the presence of Flavobacterium spp. in both spawning habitats and found weak evidence for increased Flavobacterium diversity in kokanee sampled from stream-spawning sites. However, the quantity of Flavobacterium DNA did not differ between spawning habitats. We recommend further study aimed at quantifying pathogen diversity and abundance in population-level samples of kokanee combined with environmental sampling to better understand the ecology of pathogen infection in this species.

          Electronic supplementary material

          The online version of this article (doi:10.1186/1756-0500-7-778) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Cross-biome metagenomic analyses of soil microbial communities and their functional attributes.

          For centuries ecologists have studied how the diversity and functional traits of plant and animal communities vary across biomes. In contrast, we have only just begun exploring similar questions for soil microbial communities despite soil microbes being the dominant engines of biogeochemical cycles and a major pool of living biomass in terrestrial ecosystems. We used metagenomic sequencing to compare the composition and functional attributes of 16 soil microbial communities collected from cold deserts, hot deserts, forests, grasslands, and tundra. Those communities found in plant-free cold desert soils typically had the lowest levels of functional diversity (diversity of protein-coding gene categories) and the lowest levels of phylogenetic and taxonomic diversity. Across all soils, functional beta diversity was strongly correlated with taxonomic and phylogenetic beta diversity; the desert microbial communities were clearly distinct from the nondesert communities regardless of the metric used. The desert communities had higher relative abundances of genes associated with osmoregulation and dormancy, but lower relative abundances of genes associated with nutrient cycling and the catabolism of plant-derived organic compounds. Antibiotic resistance genes were consistently threefold less abundant in the desert soils than in the nondesert soils, suggesting that abiotic conditions, not competitive interactions, are more important in shaping the desert microbial communities. As the most comprehensive survey of soil taxonomic, phylogenetic, and functional diversity to date, this study demonstrates that metagenomic approaches can be used to build a predictive understanding of how microbial diversity and function vary across terrestrial biomes.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            R: A Language and environmental for statistical computing

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              R: A Language and Environment for Statistical Computing

                Bookmark

                Author and article information

                Contributors
                matt.lemay@ubc.ca
                michael.russello@ubc.ca
                Journal
                BMC Res Notes
                BMC Res Notes
                BMC Research Notes
                BioMed Central (London )
                1756-0500
                4 November 2014
                4 November 2014
                2014
                : 7
                : 1
                : 778
                Affiliations
                University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna, BC V1V 1V7 Canada
                Article
                3296
                10.1186/1756-0500-7-778
                4228061
                25367228
                93bc8a8a-9346-432a-8cfd-6e8a00530fa8
                © Lemay and Russello; licensee BioMed Central Ltd. 2014

                This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 29 July 2014
                : 24 October 2014
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2014

                Medicine
                bacteria,bacterial coldwater disease,flavobacterium,pathogens,kokanee,sockeye salmon,oncorhynchus nerka

                Comments

                Comment on this article