49
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      ROX index as a good predictor of high flow nasal cannula failure in COVID-19 patients with acute hypoxemic respiratory failure: A systematic review and meta-analysis

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          Prediction of high flow nasal cannula (HFNC) failure in COVID-19 patients with acute hypoxemic respiratory failure (AHRF) may improve clinical management and stratification of patients for optimal treatment. We performed a systematic review and meta-analysis to determine performance of ROX index as a predictor of HFNC failure.

          Materials and methods

          Systematic search was performed in electronic databases (PubMed, Google Scholar, Web of Science and Cochrane Library) for articles published till 15 June 2021 investigating ROX index as a predictor for HFNC failure. Quality In Prognosis Studies (QUIPS) tool was used to analyze risk of bias for prognostic factors, by two independent authors.

          Results

          Eight retrospective or prospective cohort studies involving 1301 patients showed a good discriminatory value, summary area under the curve (sAUC) 0.81 (95% CI, 0.77–0.84) with sensitivity of 0.70 (95% CI, 0.59–0.80) and specificity of 0.79 (95% CI, 0.67–0.88) for predicting HNFC failure. The positive and negative likelihood ratio were 3.0 (95% CI, 2.2–5.3) and 0.37 (95% CI, 0.28–0.50) respectively, and was strongly associated with a promising predictive accuracy (Diagnostic odds ratio (DOR) 9, 95% CI, 5–16).

          Conclusion

          This meta-analysis suggests ROX index has good discriminating power for prediction of HFNC failure in COVID-19 patients with AHRF.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Quantifying heterogeneity in a meta-analysis.

          The extent of heterogeneity in a meta-analysis partly determines the difficulty in drawing overall conclusions. This extent may be measured by estimating a between-study variance, but interpretation is then specific to a particular treatment effect metric. A test for the existence of heterogeneity exists, but depends on the number of studies in the meta-analysis. We develop measures of the impact of heterogeneity on a meta-analysis, from mathematical criteria, that are independent of the number of studies and the treatment effect metric. We derive and propose three suitable statistics: H is the square root of the chi2 heterogeneity statistic divided by its degrees of freedom; R is the ratio of the standard error of the underlying mean from a random effects meta-analysis to the standard error of a fixed effect meta-analytic estimate, and I2 is a transformation of (H) that describes the proportion of total variation in study estimates that is due to heterogeneity. We discuss interpretation, interval estimates and other properties of these measures and examine them in five example data sets showing different amounts of heterogeneity. We conclude that H and I2, which can usually be calculated for published meta-analyses, are particularly useful summaries of the impact of heterogeneity. One or both should be presented in published meta-analyses in preference to the test for heterogeneity. Copyright 2002 John Wiley & Sons, Ltd.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement

            David Moher and colleagues introduce PRISMA, an update of the QUOROM guidelines for reporting systematic reviews and meta-analyses
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Assessing bias in studies of prognostic factors.

              Previous work has identified 6 important areas to consider when evaluating validity and bias in studies of prognostic factors: participation, attrition, prognostic factor measurement, confounding measurement and account, outcome measurement, and analysis and reporting. This article describes the Quality In Prognosis Studies tool, which includes questions related to these areas that can inform judgments of risk of bias in prognostic research.A working group comprising epidemiologists, statisticians, and clinicians developed the tool as they considered prognosis studies of low back pain. Forty-three groups reviewing studies addressing prognosis in other topic areas used the tool and provided feedback. Most reviewers (74%) reported that reaching consensus on judgments was easy. Median completion time per study was 20 minutes; interrater agreement (κ statistic) reported by 9 review teams varied from 0.56 to 0.82 (median, 0.75). Some reviewers reported challenges making judgments across prompting items, which were addressed by providing comprehensive guidance and examples. The refined Quality In Prognosis Studies tool may be useful to assess the risk of bias in studies of prognostic factors.
                Bookmark

                Author and article information

                Journal
                J Crit Care
                J Crit Care
                Journal of Critical Care
                Elsevier Inc.
                0883-9441
                1557-8615
                8 September 2021
                December 2021
                8 September 2021
                : 66
                : 102-108
                Affiliations
                [a ]Department of Critical Care Medicine, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
                [b ]Department of Community Medicine, Armed Forces Medical College, Pune, Maharashtra, India
                [c ]Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
                [d ]Professor of Neurology and Director, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
                Author notes
                [* ]Corresponding author at: Department of Critical Care Medicine, Rajendra Institute of Medical Sciences, Ranchi-834009, Jharkhand, India.
                Article
                S0883-9441(21)00184-2
                10.1016/j.jcrc.2021.08.012
                8424061
                34507079
                93d5ba02-011f-4ec5-8373-42600eb19e6a
                © 2021 Elsevier Inc. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                Categories
                Article

                Emergency medicine & Trauma
                high flow nasal cannula,rox index,acute hypoxemic respiratory failure,covid-19

                Comments

                Comment on this article

                scite_

                Similar content382

                Cited by48

                Most referenced authors749