33
views
0
recommends
+1 Recommend
1 collections
    3
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of probiotic properties of Pediococcus acidilactici B14 in association with Lactobacillus acidophilus ATCC 4356 for application in a soy based aerated symbiotic dessert

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The aim of this study was to evaluate the probiotic properties of Pediococcus acidilactici B14 and to study its resistance in the gastrointestinal system when combined with Lactobacillus acidophilus ATCC 4356 and used in a potentially symbiotic aerated soy based dessert. P. acidilactici B14 showed some important probiotic characteristics such as survival rate of 45.9% at pH 2.5; 72.4% in 0.3% bile salts and 95.8% after gastrointestinal transit at pH 4.0. Tolerance against the antibiotics cephalexin, neomycin, vancomycin, cefotaxime and penicillin G was also observed. The strain inhibited antagonism against the following cultures: Escherichia coli ATCC 25922, Bacillus cereus ATCC 33018, Staphylococcus aureus ATCC 6538P and Salmonella sp. The mixed culture of P. acidilactici B14 with L. acidophilus ATCC 4356 showed a survival rate of 92.4% after the passage through the gastrointestinal system at pH 4.0. Furthermore, in the presence of the food matrix, an average increase in cell viability, after being subjected to the gastrointestinal system of 9.9% at pH 2.0 and 6.1% at pH 4.0, was observed. This characterized the adequacy of the associated culture as probiotic in the development of a functional food such as soy based aerated symbiotic dessert.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens.

          The gastrointestinal tract is a complex ecosystem that associates a resident microbiota and cells of various phenotypes lining the epithelial wall expressing complex metabolic activities. The resident microbiota in the digestive tract is a heterogeneous microbial ecosystem containing up to 1 x 10(14) colony-forming units (CFUs) of bacteria. The intestinal microbiota plays an important role in normal gut function and maintaining host health. The host is protected from attack by potentially harmful microbial microorganisms by the physical and chemical barriers created by the gastrointestinal epithelium. The cells lining the gastrointestinal epithelium and the resident microbiota are two partners that properly and/or synergistically function to promote an efficient host system of defence. The gastrointestinal cells that make up the epithelium, provide a physical barrier that protects the host against the unwanted intrusion of microorganisms into the gastrointestinal microbiota, and against the penetration of harmful microorganisms which usurp the cellular molecules and signalling pathways of the host to become pathogenic. One of the basic physiological functions of the resident microbiota is that it functions as a microbial barrier against microbial pathogens. The mechanisms by which the species of the microbiota exert this barrier effect remain largely to be determined. There is increasing evidence that lactobacilli and bifidobacteria, which inhabit the gastrointestinal microbiota, develop antimicrobial activities that participate in the host's gastrointestinal system of defence. The objective of this review is to analyze the in vitro and in vivo experimental and clinical studies in which the antimicrobial activities of selected lactobacilli and bifidobacteria strains have been documented.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum.

            To identify bacterial traits related to adhesion ability in human bifidobacteria, 13 strains of Bifidobacterium longum isolated from human gastric juice and intestine were studied. Strains were tested for their capability to adhere to Caco-2 cells and classified as adhesive (Adh+) or non-adhesive (Adh-). Adh+ and Adh- strains were then investigated for their autoaggregation ability and surface hydrophobicity. Comparing the properties of Adh+ and Adh-, we observed that strains were able to adhere to cell monolayers if they autoaggregate and manifest a good degree of hydrophobicity as determined by microbial adhesion to hydrocarbons. These two traits could be used for preliminary screening to identify potentially adherent isolates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antimicrobial susceptibilities of Lactobacillus, Pediococcus and Lactococcus human isolates and cultures intended for probiotic or nutritional use.

              To determine MICs of 16 antimicrobials representing all major classes for 473 taxonomically well-characterized isolates of lactic acid bacteria (LAB) encompassing the genera Lactobacillus, Pediococcus and Lactococcus. To propose tentative epidemiological cut-off (ECOFF) values for recognizing intrinsic and acquired antimicrobial resistances in numerically dominant species. On the basis of depositors' information, LAB were grouped in categories of probiotic, nutritional, probiotic or nutritional research, human and animal isolates and tested for their antibiotic susceptibilities by broth microdilution using LAB susceptibility test medium (LSM). Tentative ECOFFs were defined according to the recommendations of the European Committee on Antimicrobial Susceptibility Testing. Isolates showing acquired antimicrobial resistance(s) were selected for PCR-based detection of resistance gene(s) and in vitro conjugative transfer experiments. Tentative ECOFF values of 13 antibiotics were determined for up to 12 LAB species. Generally, LAB were susceptible to penicillin, ampicillin, ampicillin/sulbactam, quinupristin/dalfopristin, chloramphenicol and linezolid. LAB exhibited broad or partly species-dependent MIC profiles of trimethoprim, trimethoprim/sulfamethoxazole, vancomycin, teicoplanin and fusidic acid. Three probiotic Lactobacillus strains were highly resistant to streptomycin. Although erythromycin, clindamycin and oxytetracycline possessed high antimicrobial activities, 17 Lactobacillus isolates were resistant to one or more of these antibiotics. Eight of them, including six probiotic and nutritional cultures, possessed erm(B) and/or tet(W), tet(M) or unidentified members of the tet(M) group. In vitro intra- and interspecies filter-mating experiments failed to show transfer of resistance determinants. Finding of acquired resistance genes in isolates intended for probiotic or nutritional use highlights the importance of antimicrobial susceptibility testing in documenting the safety of commercial LAB.
                Bookmark

                Author and article information

                Contributors
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Role: ND
                Journal
                babt
                Brazilian Archives of Biology and Technology
                Braz. arch. biol. technol.
                Instituto de Tecnologia do Paraná - Tecpar (Curitiba )
                1678-4324
                October 2014
                : 57
                : 5
                : 755-765
                Affiliations
                [1 ] Universidade Federal do Paraná Brazil
                [2 ] Universidade Tecnológica Federal do Paraná Brazil
                [3 ] Universidade Estadual de Ponta Grossa Brazil
                Article
                S1516-89132014000500755
                10.1590/S1516-8913201402258
                93dcd0a9-106e-4a1f-afe8-f5361a99bb07

                http://creativecommons.org/licenses/by/4.0/

                History
                Product

                SciELO Brazil

                Self URI (journal page): http://www.scielo.br/scielo.php?script=sci_serial&pid=1516-8913&lng=en
                Categories
                BIOLOGY

                General life sciences
                Pediococcus acidilactici,Lactobacillus acidophilus,gastrointestinal system,probiotics,soy

                Comments

                Comment on this article