134
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Assessment of trabecular bone structure using MDCT: comparison of 64- and 320-slice CT using HR-pQCT as the reference standard

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objectives

          The aim of our study was to perform trabecular bone structure analysis with images from 64- and 320-slice multidetector computed tomography (MDCT) and to compare these with high-resolution peripheral computed tomography (HR-pQCT).

          Materials and methods

          Twenty human cadaver distal forearm specimens were imaged on a 64- and 320-slice MDCT system at 120 kVp, 200 mA and 135 kVp, 400 mA (in-plane pixel size 234 µm; slice thickness 500 µm). HR-pQCT imaging was performed at an isotropic voxel size of 41 µm. Bone volume fraction (BV/TV), trabecular number (Tb.N), thickness (Tb.Th) and separation (Tb.Sp) were computed.

          Results

          MDCT-derived BV/TV and Tb.Sp were highly correlated ( r = 0.92–0.96, p < 0.0001) with the corresponding HR-pQCT parameters. Tb.Th was the only structure measure that did not yield any significant correlation.

          Conclusion

          The 64- and 320-slice MDCT systems both perform equally well in depicting trabecular bone architecture. However, because of constrained resolutions accurate derivation of trabecular bone measures is limited to only a subset of microarchitectural parameters.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Osteoporosis prevention, diagnosis, and therapy.

          (2001)
          To clarify the factors associated with prevention, diagnosis, and treatment of osteoporosis, and to present the most recent information available in these areas. From March 27-29, 2000, a nonfederal, nonadvocate, 13-member panel was convened, representing the fields of internal medicine, family and community medicine, endocrinology, epidemiology, orthopedic surgery, gerontology, rheumatology, obstetrics and gynecology, preventive medicine, and cell biology. Thirty-two experts from these fields presented data to the panel and an audience of 699. Primary sponsors were the National Institute of Arthritis and Musculoskeletal and Skin Diseases and the National Institutes of Health Office of Medical Applications of Research. MEDLINE was searched for January 1995 through December 1999, and a bibliography of 2449 references provided to the panel. Experts prepared abstracts for presentations with relevant literature citations. Scientific evidence was given precedence over anecdotal experience. The panel, answering predefined questions, developed conclusions based on evidence presented in open forum and the literature. The panel composed a draft statement, which was read and circulated to the experts and the audience for public discussion. The panel resolved conflicts and released a revised statement at the end of the conference. The draft statement was posted on the Web on March 30, 2000, and updated with the panel's final revisions within a few weeks. Though prevalent in white postmenopausal women, osteoporosis occurs in all populations and at all ages and has significant physical, psychosocial, and financial consequences. Risks for osteoporosis (reflected by low bone mineral density [BMD]) and for fracture overlap but are not identical. More attention should be paid to skeletal health in persons with conditions associated with secondary osteoporosis. Clinical risk factors have an important but poorly validated role in determining who should have BMD measurement, in assessing fracture risk, and in determining who should be treated. Adequate calcium and vitamin D intake is crucial to develop optimal peak bone mass and to preserve bone mass throughout life. Supplementation with these 2 nutrients may be necessary in persons not achieving recommended dietary intake. Gonadal steroids are important determinants of peak and lifetime bone mass in men, women, and children. Regular exercise, especially resistance and high-impact activities, contributes to development of high peak bone mass and may reduce risk of falls in older persons. Assessment of bone mass, identification of fracture risk, and determination of who should be treated are the optimal goals when evaluating patients for osteoporosis. Fracture prevention is the primary treatment goal for patients with osteoporosis. Several treatments have been shown to reduce the risk of osteoporotic fractures, including those that enhance bone mass and reduce the risk or consequences of falls. Adults with vertebral, rib, hip, or distal forearm fractures should be evaluated for osteoporosis and given appropriate therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography.

            Assessment of trabecular microarchitecture may enhance the prediction of fracture risk and improve monitoring of treatment response. A new high-resolution peripheral quantitative computed tomography (HR-pQCT) system permits in vivo assessment of trabecular architecture and volumetric bone mineral density (BMD) at the distal radius and tibia with a voxel size of 82 microm3. We determined the short-term reproducibility of this device by measuring 15 healthy volunteers three times each. We compared HR-pQCT measurements in 108 healthy premenopausal, 113 postmenopausal osteopenic, and 35 postmenopausal osteoporotic women. Furthermore, we compared values in postmenopausal osteopenic women with (n = 35) and without previous fracture history (n = 78). We conducted a cross-sectional study in a private clinical research center. We took HR-pQCT measurements of the radius and tibia. Femoral neck and spine BMD were measured in postmenopausal women by dual-energy x-ray absorptiometry. Precision of HR-pQCT measurements was 0.7-1.5% for total, trabecular, and cortical densities and 2.5-4.4% for trabecular architecture. Postmenopausal women had lower density, trabecular number, and cortical thickness than premenopausal women (P < 0.001) at both radius and tibia. Osteoporotic women had lower density, cortical thickness, and increased trabecular separation than osteopenic women (P < 0.01) at both sites. Furthermore, although spine and hip BMD were similar, fractured osteopenic women had lower trabecular density and more heterogeneous trabecular distribution (P < 0.02) at the radius compared with unfractured osteopenic women. HR-pQCT appears promising to assess bone density and microarchitecture at peripheral sites in terms of reproducibility and ability to detect age- and disease-related changes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus.

              The appearance of cancellous bone architecture is different for various skeletal sites and various disease states. During aging and disease, plates are perforated and connecting rods are dissolved. There is a continuous shift from one structural type to the other. So traditional histomorphometric procedures, which are based on a fixed model type, will lead to questionable results. The introduction of three-dimensional (3D) measuring techniques in bone research makes it possible to capture the actual architecture of cancellous bone without assumptions of the structure type. This requires, however, new methods that make direct use of the 3D information. Within the framework of a BIOMED I project of the European Union, we analyzed a total of 260 human bone biopsies taken from five different skeletal sites (femoral head, vertebral bodies L2 and L4, iliac crest, and calcaneus) from 52 donors. The samples were measured three-dimensionally with a microcomputed tomography scanner and subsequently evaluated with both traditional indirect histomorphometric methods and newly developed direct ones. The results show significant differences between the methods and in their relation to the bone volume fraction. Based on the direct 3D analysis of human bone biopsies, it appears that samples with a lower bone mass are primarily characterized by a smaller plate-to-rod ratio, and to a lesser extent by thinner trabecular elements.
                Bookmark

                Author and article information

                Contributors
                +49-30-627043 , +49-30-527910 , ahi-sema.issever@charite.de
                Journal
                Eur Radiol
                European Radiology
                Springer-Verlag (Berlin/Heidelberg )
                0938-7994
                1432-1084
                27 August 2009
                27 August 2009
                February 2010
                : 20
                : 2
                : 458-468
                Affiliations
                [1 ]Department of Radiology, Charité Campus Mitte, Universitaetsmedizin, Berlin, Germany
                [2 ]Department of Radiology and Biomedical Imaging, Musculoskeletal and Quantitative Imaging Research Group, University of California, San Francisco, CA USA
                [3 ]Department of Radiology, Charité Campus Mitte, Universitaetsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
                Article
                1571
                10.1007/s00330-009-1571-7
                2814042
                19711081
                94754a02-c2e9-49f6-a4fd-d752f68fc012
                © The Author(s) 2009
                History
                : 18 January 2009
                : 24 June 2009
                : 5 July 2009
                Categories
                Musculoskeletal
                Custom metadata
                © European Society of Radiology 2010

                Radiology & Imaging
                320-slice mdct,trabecular bone,structure analysis,osteoporosis,hr-pqct
                Radiology & Imaging
                320-slice mdct, trabecular bone, structure analysis, osteoporosis, hr-pqct

                Comments

                Comment on this article