1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Canine Distemper Virus in Wild Carnivore Populations from the Czech Republic (2012–2020): Occurrence, Geographical Distribution, and Phylogenetic Analysis

      , , , , ,
      Life
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Canine distemper is a highly contagious viral disease in carnivores and represents a serious threat for both wild and domestic animals. The aim of our study was to monitor the occurrence of the canine distemper virus in wildlife from the Czech Republic, reveal the H gene heterogeneity in positive samples and perform subsequent phylogenetic analysis. In total, 412 wild animals of 10 species were included in the study: 219 red foxes (Vulpes vulpes), 79 European badgers (Meles meles), 47 European otters (Lutra lutra), 40 stone martens (Martes foina), 10 pine martens (M. martes), 7 raccoons (Procyon lotor), 5 undetermined martens (Martes sp.), 2 wolves (Canis lupus), 1 European polecat (Mustela putorius), 1 free-ranging ferret (Mustela putorius furo), and 1 free-ranging American mink (Neovison vison). Most animals were found dead or were killed by hunters during hunting seasons in the years 2012–2020 and came from all 14 regions of the Czech Republic. In the animals that were hunted, symptoms such as apathy, loss of shyness or disorientation were reported. Canine distemper virus (CDV) was detected by real-time RT-PCR in the tissues of 74 (18%) of the animals, including 62 (28%) red foxes, 4 (10%) stone martens, 3 (43%) raccoons, 2 (20%) pine martens, 2 (2.5%) European badgers and 1 (20%) undetermined marten. There was a statistical difference in positivity among animal species (p < 0.0001), regions (p = 0.0057), and the years of sampling (p = 0.0005). To determine the genetic characteristics of circulating variants of CDV in wildlife, 23 of 74 CDV variants were partially sequenced. Phylogenetic analysis showed that 21 variants belonged to the European lineage and two strains belonged to the European-Wildlife lineage. This study provides the first comprehensive overview of the prevalence and spatial distribution of CDV in wildlife in the Czech Republic, including molecular phylogenetic analysis of currently circulating CDV lineages.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms.

          The Molecular Evolutionary Genetics Analysis (Mega) software implements many analytical methods and tools for phylogenomics and phylomedicine. Here, we report a transformation of Mega to enable cross-platform use on Microsoft Windows and Linux operating systems. Mega X does not require virtualization or emulation software and provides a uniform user experience across platforms. Mega X has additionally been upgraded to use multiple computing cores for many molecular evolutionary analyses. Mega X is available in two interfaces (graphical and command line) and can be downloaded from www.megasoftware.net free of charge.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform.

            K Katoh (2002)
            A multiple sequence alignment program, MAFFT, has been developed. The CPU time is drastically reduced as compared with existing methods. MAFFT includes two novel techniques. (i) Homo logous regions are rapidly identified by the fast Fourier transform (FFT), in which an amino acid sequence is converted to a sequence composed of volume and polarity values of each amino acid residue. (ii) We propose a simplified scoring system that performs well for reducing CPU time and increasing the accuracy of alignments even for sequences having large insertions or extensions as well as distantly related sequences of similar length. Two different heuristics, the progressive method (FFT-NS-2) and the iterative refinement method (FFT-NS-i), are implemented in MAFFT. The performances of FFT-NS-2 and FFT-NS-i were compared with other methods by computer simulations and benchmark tests; the CPU time of FFT-NS-2 is drastically reduced as compared with CLUSTALW with comparable accuracy. FFT-NS-i is over 100 times faster than T-COFFEE, when the number of input sequences exceeds 60, without sacrificing the accuracy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases.

              K Tamura (1992)
              A simple mathematical method is developed to estimate the number of nucleotide substitutions per site between two DNA sequences, by extending Kimura's (1980) two-parameter method to the case where a G+C-content bias exists. This method will be useful when there are strong transition-transversion and G+C-content biases, as in the case of Drosophila mitochondrial DNA.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                LBSIB7
                Life
                Life
                MDPI AG
                2075-1729
                February 2022
                February 15 2022
                : 12
                : 2
                : 289
                Article
                10.3390/life12020289
                35207575
                94f34fa4-8567-49dd-8517-4ef345304735
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article