25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A Deep Learning Model to Predict a Diagnosis of Alzheimer Disease by Using 18F-FDG PET of the Brain

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose To develop and validate a deep learning algorithm that predicts the final diagnosis of Alzheimer disease (AD), mild cognitive impairment, or neither at fluorine 18 (18F) fluorodeoxyglucose (FDG) PET of the brain and compare its performance to that of radiologic readers. Materials and Methods Prospective 18F-FDG PET brain images from the Alzheimer's Disease Neuroimaging Initiative (ADNI) (2109 imaging studies from 2005 to 2017, 1002 patients) and retrospective independent test set (40 imaging studies from 2006 to 2016, 40 patients) were collected. Final clinical diagnosis at follow-up was recorded. Convolutional neural network of InceptionV3 architecture was trained on 90% of ADNI data set and tested on the remaining 10%, as well as the independent test set, with performance compared to radiologic readers. Model was analyzed with sensitivity, specificity, receiver operating characteristic (ROC), saliency map, and t-distributed stochastic neighbor embedding. Results The algorithm achieved area under the ROC curve of 0.98 (95% confidence interval: 0.94, 1.00) when evaluated on predicting the final clinical diagnosis of AD in the independent test set (82% specificity at 100% sensitivity), an average of 75.8 months prior to the final diagnosis, which in ROC space outperformed reader performance (57% [four of seven] sensitivity, 91% [30 of 33] specificity; P < .05). Saliency map demonstrated attention to known areas of interest but with focus on the entire brain. Conclusion By using fluorine 18 fluorodeoxyglucose PET of the brain, a deep learning algorithm developed for early prediction of Alzheimer disease achieved 82% specificity at 100% sensitivity, an average of 75.8 months prior to the final diagnosis. © RSNA, 2018 Online supplemental material is available for this article. See also the editorial by Larvie in this issue.

          Related collections

          Most cited references8

          • Record: found
          • Abstract: found
          • Article: not found

          Machine learning and radiology.

          In this paper, we give a short introduction to machine learning and survey its applications in radiology. We focused on six categories of applications in radiology: medical image segmentation, registration, computer aided detection and diagnosis, brain function or activity analysis and neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or MRI images, and text analysis of radiology reports using natural language processing (NLP) and natural language understanding (NLU). This survey shows that machine learning plays a key role in many radiology applications. Machine learning identifies complex patterns automatically and helps radiologists make intelligent decisions on radiology data such as conventional radiographs, CT, MRI, and PET images and radiology reports. In many applications, the performance of machine learning-based automatic detection and diagnosis systems has shown to be comparable to that of a well-trained and experienced radiologist. Technology development in machine learning and radiology will benefit from each other in the long run. Key contributions and common characteristics of machine learning techniques in radiology are discussed. We also discuss the problem of translating machine learning applications to the radiology clinical setting, including advantages and potential barriers. Copyright © 2012. Published by Elsevier B.V.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Brain PET in the diagnosis of Alzheimer's disease.

            The aim of this article was to review the current role of brain PET in the diagnosis of Alzheimer dementia. The characteristic patterns of glucose metabolism on brain FDG-PET can help in differentiating Alzheimer's disease from other causes of dementia such as frontotemporal dementia and dementia of Lewy body. Amyloid brain PET may exclude significant amyloid deposition and thus Alzheimer's disease in appropriate clinical setting.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Diagnostic accuracy of 18F amyloid PET tracers for the diagnosis of Alzheimer’s disease: a systematic review and meta-analysis

              Imaging or tissue biomarker evidence has been introduced into the core diagnostic pathway for Alzheimer’s disease (AD). PET using 18F-labelled beta-amyloid PET tracers has shown promise for the early diagnosis of AD. However, most studies included only small numbers of participants and no consensus has been reached as to which radiotracer has the highest diagnostic accuracy. First, we performed a systematic review of the literature published between 1990 and 2014 for studies exploring the diagnostic accuracy of florbetaben, florbetapir and flutemetamol in AD. The included studies were analysed using the QUADAS assessment of methodological quality. A meta-analysis of the sensitivity and specificity reported within each study was performed. Pooled values were calculated for each radiotracer and for visual or quantitative analysis by population included. The systematic review identified nine studies eligible for inclusion. There were limited variations in the methods between studies reporting the same radiotracer. The meta-analysis results showed that pooled sensitivity and specificity values were in general high for all tracers. This was confirmed by calculating likelihood ratios. A patient with a positive ratio is much more likely to have AD than a patient with a negative ratio, and vice versa. However, specificity was higher when only patients with AD were compared with healthy controls. This systematic review and meta-analysis found no marked differences in the diagnostic accuracy of the three beta-amyloid radiotracers. All tracers perform better when used to discriminate between patients with AD and healthy controls. The sensitivity and specificity for quantitative and visual analysis are comparable to those of other imaging or biomarker techniques used to diagnose AD. Further research is required to identify the combination of tests that provides the highest sensitivity and specificity, and to identify the most suitable position for the tracer in the clinical pathway. Electronic supplementary material The online version of this article (doi:10.1007/s00259-015-3228-x) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Journal
                Radiology
                Radiology
                Radiological Society of North America (RSNA)
                0033-8419
                1527-1315
                November 06 2018
                November 06 2018
                : 180958
                Article
                10.1148/radiol.2018180958
                6358051
                30398430
                9513bc75-eff4-42c2-ad90-0c16a0c99e27
                © 2018
                History

                Comments

                Comment on this article