12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of water quality based on a machine learning algorithm and water quality index for the Ebinur Lake Watershed, China

      research-article
      1 , 2 , 1 , 2 , 3 , , 1 , 2 , 3
      Scientific Reports
      Nature Publishing Group UK

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The water quality index (WQI) has been used to identify threats to water quality and to support better water resource management. This study combines a machine learning algorithm, WQI, and remote sensing spectral indices (difference index, DI; ratio index, RI; and normalized difference index, NDI) through fractional derivatives methods and in turn establishes a model for estimating and assessing the WQI. The results show that the calculated WQI values range between 56.61 and 2,886.51. We also explore the relationship between reflectance data and the WQI. The number of bands with correlation coefficients passing a significance test at 0.01 first increases and then decreases with a peak appearing after 1.6 orders. WQI and DI as well as RI and NDI correlation coefficients between optimal band combinations of the peak also appear after 1.6 orders with R 2 values of 0.92, 0.58 and 0.92. Finally, 22 WQI estimation models were established by POS-SVR to compare the predictive effects of these models. The models based on a spectral index of 1.6 were found to perform much better than the others, with an R 2 of 0.92, an RMSE of 58.4, and an RPD of 2.81 and a slope of curve fitting of 0.97.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Temperature-controlled organic carbon mineralization in lake sediments.

          Peatlands, soils and the ocean floor are well-recognized as sites of organic carbon accumulation and represent important global carbon sinks. Although the annual burial of organic carbon in lakes and reservoirs exceeds that of ocean sediments, these inland waters are components of the global carbon cycle that receive only limited attention. Of the organic carbon that is being deposited onto the sediments, a certain proportion will be mineralized and the remainder will be buried over geological timescales. Here we assess the relationship between sediment organic carbon mineralization and temperature in a cross-system survey of boreal lakes in Sweden, and with input from a compilation of published data from a wide range of lakes that differ with respect to climate, productivity and organic carbon source. We find that the mineralization of organic carbon in lake sediments exhibits a strongly positive relationship with temperature, which suggests that warmer water temperatures lead to more mineralization and less organic carbon burial. Assuming that future organic carbon delivery to the lake sediments will be similar to that under present-day conditions, we estimate that temperature increases following the latest scenarios presented by the Intergovernmental Panel on Climate Change could result in a 4-27 per cent (0.9-6.4 Tg C yr(-1)) decrease in annual organic carbon burial in boreal lakes.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Landslide susceptibility assessment using SVM machine learning algorithm

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Total coliforms, arsenic and cadmium exposure through drinking water in the Western Region of Ghana: application of multivariate statistical technique to groundwater quality.

              In recent times, surface water resource in the Western Region of Ghana has been found to be inadequate in supply and polluted by various anthropogenic activities. As a result of these problems, the demand for groundwater by the human populations in the peri-urban communities for domestic, municipal and irrigation purposes has increased without prior knowledge of its water quality. Water samples were collected from 14 public hand-dug wells during the rainy season in 2013 and investigated for total coliforms, Escherichia coli, mercury (Hg), arsenic (As), cadmium (Cd) and physicochemical parameters. Multivariate statistical analysis of the dataset and a linear stoichiometric plot of major ions were applied to group the water samples and to identify the main factors and sources of contamination. Hierarchal cluster analysis revealed four clusters from the hydrochemical variables (R-mode) and three clusters in the case of water samples (Q-mode) after z score standardization. Principal component analysis after a varimax rotation of the dataset indicated that the four factors extracted explained 93.3 % of the total variance, which highlighted salinity, toxic elements and hardness pollution as the dominant factors affecting groundwater quality. Cation exchange, mineral dissolution and silicate weathering influenced groundwater quality. The ranking order of major ions was Na(+) > Ca(2+) > K(+) > Mg(2+) and Cl(-) > SO4 (2-) > HCO3 (-). Based on piper plot and the hydrogeology of the study area, sodium chloride (86 %), sodium hydrogen carbonate and sodium carbonate (14 %) water types were identified. Although E. coli were absent in the water samples, 36 % of the wells contained total coliforms (Enterobacter species) which exceeded the WHO guidelines limit of zero colony-forming unit (CFU)/100 mL of drinking water. With the exception of Hg, the concentration of As and Cd in 79 and 43 % of the water samples exceeded the WHO guideline limits of 10 and 3 μg/L for drinking water, respectively. Reported values in some areas in Nigeria, Malaysia and USA indicated that the maximum concentration of Cd was low and As was high in this study. Health risk assessment of Cd, As and Hg based on average daily dose, hazard quotient and cancer risk was determined. In conclusion, multiple natural processes and anthropogenic activities from non-point sources contributed significantly to groundwater salinization, hardness, toxic element and microbiological contamination of the study area. The outcome of this study can be used as a baseline data to prioritize areas for future sustainable development of public wells.
                Bookmark

                Author and article information

                Contributors
                zhangfei3s@163.com
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                9 October 2017
                9 October 2017
                2017
                : 7
                : 12858
                Affiliations
                [1 ]ISNI 0000 0000 9544 7024, GRID grid.413254.5, College of Resources and Environment Science, Xinjiang University, ; Urumqi, 830046 Xinjiang China
                [2 ]ISNI 0000 0000 9544 7024, GRID grid.413254.5, Key Laboratory of Oasis Ecology, Xinjiang University, ; Urumqi, 830046 Xinjiang China
                [3 ]Key Laboratory of Xinjiang wisdom city and environment modeling Urumqi, Urumqi, 830046 Xinjiang China
                Article
                12853
                10.1038/s41598-017-12853-y
                5634425
                28993639
                951f1657-f066-4e0c-9f4e-77739c6af3fa
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 23 May 2017
                : 14 September 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article