1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pharmacodynamics and Pharmacokinetics of Injectable Pimobendan and Its Metabolite, O-Desmethyl-Pimobendan, in Healthy Dogs

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objectives: This study was designed to thoroughly evaluate the effects of bolus pimobendan at a dose of 0.15 mg/kg on cardiac functions, hemodynamics, and electrocardiographic parameters together with the pharmacokinetic profile of pimobendan and its active metabolite, o-desmethyl-pimobendan (ODMP), in anesthetized dogs.

          Methods: Nine beagle dogs were anesthetized and instrumented to obtain left ventricular pressures, aortic pressures, cardiac outputs, right atrial pressures, pulmonary arterial pressures, pulmonary capillary wedge pressures, electrocardiograms. After baseline data were collected, dogs were given a single bolus of pimobendan, and the pharmacodynamic parameters were obtained at 10, 20, 30, 60, and 120 min. Meanwhile, the venous blood was collected at baseline and 2, 5, 10, 20, 30, 60, 120, 180, 360, and 1,440 min after administration for the determination of pharmacokinetic parameters.

          Results: Compared with baseline measurements, the left ventricular inotropic indices significantly increased in response to intravenous pimobendan, as inferred from the maximum rate of rise in the left ventricular pressure and the contractility index. Conversely, the left ventricular lusitropic parameters significantly decreased, as inferred from the maximum rate of fall in the left ventricular pressure and the left ventricular relaxation time constant. Significant increases were also noted in cardiac output and systolic blood pressure. Decreases were observed in the systemic vascular resistance, pulmonary vascular resistance, left ventricular end-diastolic pressure, pulmonary capillary wedge pressure, right atrial pressure, and pulmonary arterial pressure. The heart rate increased, but the PQ interval decreased. There was no arrhythmia during the observed period (2 h). The mean maximum plasma concentration (in μg/L) for ODMP was 30.0 ± 8.8. Pimobendan exerted large volume of distribution ~9 L/kg.

          Conclusions: Intravenous pimobendan at the recommended dose for dogs increased cardiac contraction and cardiac output, accelerated cardiac relaxation but decreased both vascular resistances. These mechanisms support the use of injectable pimobendan in acute heart failure.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          DrugBank: a comprehensive resource for in silico drug discovery and exploration

          DrugBank is a unique bioinformatics/cheminformatics resource that combines detailed drug (i.e. chemical) data with comprehensive drug target (i.e. protein) information. The database contains >4100 drug entries including >800 FDA approved small molecule and biotech drugs as well as >3200 experimental drugs. Additionally, >14 000 protein or drug target sequences are linked to these drug entries. Each DrugCard entry contains >80 data fields with half of the information being devoted to drug/chemical data and the other half devoted to drug target or protein data. Many data fields are hyperlinked to other databases (KEGG, PubChem, ChEBI, PDB, Swiss-Prot and GenBank) and a variety of structure viewing applets. The database is fully searchable supporting extensive text, sequence, chemical structure and relational query searches. Potential applications of DrugBank include in silico drug target discovery, drug design, drug docking or screening, drug metabolism prediction, drug interaction prediction and general pharmaceutical education. DrugBank is available at .
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            ACVIM consensus guidelines for the diagnosis and treatment of myxomatous mitral valve disease in dogs

            Abstract This report, issued by the ACVIM Specialty of Cardiology consensus panel, revises guidelines for the diagnosis and treatment of myxomatous mitral valve disease (MMVD, also known as endocardiosis and degenerative or chronic valvular heart disease) in dogs, originally published in 2009. Updates were made to diagnostic, as well as medical, surgical, and dietary treatment recommendations. The strength of these recommendations was based on both the quantity and quality of available evidence supporting diagnostic and therapeutic decisions. Management of MMVD before the onset of clinical signs of heart failure has changed substantially compared with the 2009 guidelines, and new strategies to diagnose and treat advanced heart failure and pulmonary hypertension are reviewed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of the funny current in pacemaker activity.

              Abstract: Pacemaking is a basic physiological process, and the cellular mechanisms involved in this function have always attracted the keen attention of investigators. The "funny" (I(f)) current, originally described in sinoatrial node myocytes as an inward current activated on hyperpolarization to the diastolic range of voltages, has properties suitable for generating repetitive activity and for modulating spontaneous rate. The degree of activation of the funny current determines, at the end of an action potential, the steepness of phase 4 depolarization; hence, the frequency of action potential firing. Because I(f) is controlled by intracellular cAMP and is thus activated and inhibited by beta-adrenergic and muscarinic M2 receptor stimulation, respectively, it represents a basic physiological mechanism mediating autonomic regulation of heart rate. Given the complexity of the cellular processes involved in rhythmic activity, an exact quantification of the extent to which I(f) and other mechanisms contribute to pacemaking is still a debated issue; nonetheless, a wealth of information collected since the current was first described more than 30 years ago clearly agrees to identify I(f) as a major player in both generation of spontaneous activity and rate control. I(f)- dependent pacemaking has recently advanced from a basic, physiologically relevant concept, as originally described, to a practical concept that has several potentially useful clinical applications and can be valuable in therapeutically relevant conditions. Typically, given their exclusive role in pacemaking, f-channels are ideal targets of drugs aiming to pharmacological control of cardiac rate. Molecules able to bind specifically to and block f-channels can thus be used as pharmacological tools for heart rate reduction with little or no adverse cardiovascular side effects. Indeed a selective f-channel inhibitor, ivabradine, is today commercially available as a tool in the treatment of stable chronic angina. Also, several loss-of-function mutations of HCN4 (hyperpolarization-activated, cyclic-nucleotide gated 4), the major constitutive subunit of f-channels in pacemaker cells, are known today to cause rhythm disturbances, such as for example inherited sinus bradycardia. Finally, gene- or cell-based methods for in situ delivery of f-channels to silent or defective cardiac muscle represent novel approaches for the development of biological pacemakers eventually able to replace electronic devices.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Vet Sci
                Front Vet Sci
                Front. Vet. Sci.
                Frontiers in Veterinary Science
                Frontiers Media S.A.
                2297-1769
                20 August 2021
                2021
                : 8
                : 656902
                Affiliations
                [1] 1Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University , Bangkok, Thailand
                [2] 2Department of Physiology, Faculty of Pharmacy, Mahidol University , Bangkok, Thailand
                [3] 3Faculty of Medicine Ramathibodi Hospital, Chakri Naruebodindra Medical Institute, Mahidol University , Bangkok, Thailand
                Author notes

                Edited by: David Bruyette, Anivive Lifesciences, United States

                Reviewed by: Jin-Young Chung, Kangwon National University, South Korea; Enrica Zucca, University of Milan, Italy; Justin Allen, VCA West Los Angeles Animal Hospital, United States

                *Correspondence: Anusak Kijtawornrat anusak.k@ 123456chula.ac.th

                This article was submitted to Comparative and Clinical Medicine, a section of the journal Frontiers in Veterinary Science

                Article
                10.3389/fvets.2021.656902
                8417876
                34490386
                953e5848-4a01-41ee-9c14-a4eadc1e9769
                Copyright © 2021 Pichayapaiboon, Tantisuwat, Boonpala, Saengklub, Boonyarattanasoonthorn, Khemawoot and Kijtawornrat.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 21 January 2021
                : 30 July 2021
                Page count
                Figures: 5, Tables: 1, Equations: 0, References: 41, Pages: 11, Words: 6882
                Categories
                Veterinary Science
                Original Research

                cardiovascular,dog,intravenous,odmp,pharmacodynamics,pharmacokinetics,pimobendan

                Comments

                Comment on this article