18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Benefits and detriments of unilateral cochlear implant use on bilateral auditory development in children who are deaf

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We have explored both the benefits and detriments of providing electrical input through a cochlear implant in one ear to the auditory system of young children. A cochlear implant delivers electrical pulses to stimulate the auditory nerve, providing children who are deaf with access to sound. The goals of implantation are to restrict reorganization of the deprived immature auditory brain and promote development of hearing and spoken language. It is clear that limiting the duration of deprivation is a key factor. Additional considerations are the onset, etiology, and use of residual hearing as each of these can have unique effects on auditory development in the pre-implant period. New findings show that many children receiving unilateral cochlear implants are developing mature-like brainstem and thalamo-cortical responses to sound with long term use despite these sources of variability; however, there remain considerable abnormalities in cortical function. The most apparent, determined by implanting the other ear and measuring responses to acute stimulation, is a loss of normal cortical response from the deprived ear. Recent data reveal that this can be avoided in children by early implantation of both ears simultaneously or with limited delay. We conclude that auditory development requires input early in development and from both ears.

          Related collections

          Most cited references114

          • Record: found
          • Abstract: found
          • Article: not found

          Competitive Hebbian learning through spike-timing-dependent synaptic plasticity.

          Hebbian models of development and learning require both activity-dependent synaptic plasticity and a mechanism that induces competition between different synapses. One form of experimentally observed long-term synaptic plasticity, which we call spike-timing-dependent plasticity (STDP), depends on the relative timing of pre- and postsynaptic action potentials. In modeling studies, we find that this form of synaptic modification can automatically balance synaptic strengths to make postsynaptic firing irregular but more sensitive to presynaptic spike timing. It has been argued that neurons in vivo operate in such a balanced regime. Synapses modifiable by STDP compete for control of the timing of postsynaptic action potentials. Inputs that fire the postsynaptic neuron with short latency or that act in correlated groups are able to compete most successfully and develop strong synapses, while synapses of longer-latency or less-effective inputs are weakened.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Auditory-visual integration during multimodal object recognition in humans: a behavioral and electrophysiological study.

            The aim of this study was (1) to provide behavioral evidence for multimodal feature integration in an object recognition task in humans and (2) to characterize the processing stages and the neural structures where multisensory interactions take place. Event-related potentials (ERPs) were recorded from 30 scalp electrodes while subjects performed a forced-choice reaction-time categorization task: At each trial, the subjects had to indicate which of two objects was presented by pressing one of two keys. The two objects were defined by auditory features alone, visual features alone, or the combination of auditory and visual features. Subjects were more accurate and rapid at identifying multimodal than unimodal objects. Spatiotemporal analysis of ERPs and scalp current densities revealed several auditory-visual interaction components temporally, spatially, and functionally distinct before 200 msec poststimulus. The effects observed were (1) in visual areas, new neural activities (as early as 40 msec poststimulus) and modulation (amplitude decrease) of the N185 wave to unimodal visual stimulus, (2) in the auditory cortex, modulation (amplitude increase) of subcomponents of the unimodal auditory N1 wave around 90 to 110 msec, and (3) new neural activity over the right fronto-temporal area (140 to 165 msec). Furthermore, when the subjects were separated into two groups according to their dominant modality to perform the task in unimodal conditions (shortest reaction time criteria), the integration effects were found to be similar for the two groups over the nonspecific fronto-temporal areas, but they clearly differed in the sensory-specific cortices, affecting predominantly the sensory areas of the nondominant modality. Taken together, the results indicate that multisensory integration is mediated by flexible, highly adaptive physiological processes that can take place very early in the sensory processing chain and operate in both sensory-specific and nonspecific cortical structures in different ways.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cross-modal plasticity: where and how?

              Animal studies have shown that sensory deprivation in one modality can have striking effects on the development of the remaining modalities. Although recent studies of deaf and blind humans have also provided convincing behavioural, electrophysiological and neuroimaging evidence of increased capabilities and altered organization of spared modalities, there is still much debate about the identity of the brain systems that are changed and the mechanisms that mediate these changes. Plastic changes across brain systems and related behaviours vary as a function of the timing and the nature of changes in experience. This specificity must be understood in the context of differences in the maturation rates and timing of the associated critical periods, differences in patterns of transiently existing connections, and differences in molecular factors across brain systems.
                Bookmark

                Author and article information

                Journal
                Front Psychol
                Front Psychol
                Front. Psychol.
                Frontiers in Psychology
                Frontiers Media S.A.
                1664-1078
                16 October 2013
                2013
                : 4
                : 719
                Affiliations
                [1] 1Archie’s Cochlear Implant Laboratory, The Hospital for Sick Children Toronto, ON, Canada
                [2] 2Institute of Medical Sciences, Faculty of Medicine, University of Toronto Toronto, ON, Canada
                [3] 3Department of Otolaryngology – Head and Neck surgery, Faculty of Medicine, University of Toronto Toronto, ON, Canada
                Author notes

                Edited by: Virginia Penhune, Concordia University, Canada

                Reviewed by: Minna Huotilainen, University of Helsinki, Finland; Heikki Lyytinen, University of Jyväskylä, Finland

                *Correspondence: Karen A. Gordon, Archie’s Cochlear Implant Laboratory, The Hospital for Sick Children, 555 University Avenue, Room 6D06, Toronto, ON M5G 1X8, Canada e-mail: Karen.gordon@ 123456utoronto.ca

                This article was submitted to Auditory Cognitive Neuroscience, a section of the journal Frontiers in Psychology.

                Article
                10.3389/fpsyg.2013.00719
                3797443
                24137143
                958cbd46-0725-45c3-afc8-ddf4ca09618a
                Copyright © Gordon, Jiwani and Papsin.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 01 May 2013
                : 18 September 2013
                Page count
                Figures: 4, Tables: 0, Equations: 0, References: 139, Pages: 14, Words: 0
                Categories
                Psychology
                Review Article

                Clinical Psychology & Psychiatry
                deafness,cochlear implantation,unilateral hearing,auditory brainstem responses,auditory evoked cortical potentials,auditory development,plasticity,binaural hearing

                Comments

                Comment on this article