15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Insights on Structure and Function of a Late Embryogenesis Abundant Protein from Amaranthus cruentus: An Intrinsically Disordered Protein Involved in Protection against Desiccation, Oxidant Conditions, and Osmotic Stress

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Late embryogenesis abundant (LEA) proteins are part of a large protein family that protect other proteins from aggregation due to desiccation or osmotic stresses. Recently, the Amaranthus cruentus seed proteome was characterized by 2D-PAGE and one highly accumulated protein spot was identified as a LEA protein and was named AcLEA. In this work, AcLEA cDNA was cloned into an expression vector and the recombinant protein was purified and characterized. AcLEA encodes a 172 amino acid polypeptide with a predicted molecular mass of 18.34 kDa and estimated p I of 8.58. Phylogenetic analysis revealed that AcLEA is evolutionarily close to the LEA3 group. Structural characteristics were revealed by nuclear magnetic resonance and circular dichroism methods. We have shown that recombinant AcLEA is an intrinsically disordered protein in solution even at high salinity and osmotic pressures, but it has a strong tendency to take a secondary structure, mainly folded as α-helix, when an inductive additive is present. Recombinant AcLEA function was evaluated using Escherichia coli as in vivo model showing the important protection role against desiccation, oxidant conditions, and osmotic stress. AcLEA recombinant protein was localized in cytoplasm of Nicotiana benthamiana protoplasts and orthologs were detected in seeds of wild and domesticated amaranth species. Interestingly AcLEA was detected in leaves, stems, and roots but only in plants subjected to salt stress. This fact could indicate the important role of AcLEA protection during plant stress in all amaranth species studied.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus.

          Transient gene expression is a fast, flexible and reproducible approach to high-level expression of useful proteins. In plants, recombinant strains of Agrobacterium tumefaciens can be used for transient expression of genes that have been inserted into the T-DNA region of the bacterial Ti plasmid. A bacterial culture is vacuum-infiltrated into leaves, and upon T-DNA transfer, there is ectopic expression of the gene of interest in the plant cells. However, the utility of the system is limited because the ectopic protein expression ceases after 2-3 days. Here, we show that post-transcriptional gene silencing (PTGS) is a major cause for this lack of efficiency. We describe a system based on co-expression of a viral-encoded suppressor of gene silencing, the p19 protein of tomato bushy stunt virus (TBSV), that prevents the onset of PTGS in the infiltrated tissues and allows high level of transient expression. Expression of a range of proteins was enhanced 50-folds or more in the presence of p19 so that protein purification could be achieved from as little as 100 mg of infiltrated leaf material. The effect of p19 was not saturated in cells that had received up to four individual T-DNAs and persisted until leaf senescence. Because of its simplicity and rapidity, we anticipate that the p19-enhanced expression system will have value in industrial production as well as a research tool for isolation and biochemical characterisation of a broad range of proteins without the need for the time-consuming regeneration of stably transformed plants.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            THE MOLECULAR BASIS OF DEHYDRATION TOLERANCE IN PLANTS.

            Molecular studies of drought stress in plants use a variety of strategies and include different species subjected to a wide range of water deficits. Initial research has by necessity been largely descriptive, and relevant genes have been identified either by reference to physiological evidence or by differential screening. A large number of genes with a potential role in drought tolerance have been described, and major themes in the molecular response have been established. Particular areas of importance are sugar metabolism and late-embryogenesis-abundant (LEA) proteins. Studies have begun to examine mechanisms that control the gene expression, and putative regulatory pathways have been established. Recent attempts to understand gene function have utilized transgenic plants. These efforts are of clear agronomic importance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              LEA (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana

              Background LEA (late embryogenesis abundant) proteins have first been described about 25 years ago as accumulating late in plant seed development. They were later found in vegetative plant tissues following environmental stress and also in desiccation tolerant bacteria and invertebrates. Although they are widely assumed to play crucial roles in cellular dehydration tolerance, their physiological and biochemical functions are largely unknown. Results We present a genome-wide analysis of LEA proteins and their encoding genes in Arabidopsis thaliana. We identified 51 LEA protein encoding genes in the Arabidopsis genome that could be classified into nine distinct groups. Expression studies were performed on all genes at different developmental stages, in different plant organs and under different stress and hormone treatments using quantitative RT-PCR. We found evidence of expression for all 51 genes. There was only little overlap between genes expressed in vegetative tissues and in seeds and expression levels were generally higher in seeds. Most genes encoding LEA proteins had abscisic acid response (ABRE) and/or low temperature response (LTRE) elements in their promoters and many genes containing the respective promoter elements were induced by abscisic acid, cold or drought. We also found that 33% of all Arabidopsis LEA protein encoding genes are arranged in tandem repeats and that 43% are part of homeologous pairs. The majority of LEA proteins were predicted to be highly hydrophilic and natively unstructured, but some were predicted to be folded. Conclusion The analyses indicate a wide range of sequence diversity, intracellular localizations, and expression patterns. The high fraction of retained duplicate genes and the inferred functional diversification indicate that they confer an evolutionary advantage for an organism under varying stressful environmental conditions. This comprehensive analysis will be an important starting point for future efforts to elucidate the functional role of these enigmatic proteins.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                07 April 2017
                2017
                : 8
                : 497
                Affiliations
                [1] 1Department of Molecular Biology, Instituto Potosino de Investigación Científica y Tecnológica, A.C. San Luis Potosí, México
                [2] 2Instituto de Biotecnología, Universidad Nacional Autónoma de México Cuernavaca, México
                [3] 3Instituto de Química, Universidad Nacional Autónoma de México Ciudad de México, México
                [4] 4Laboratorio de Fisicoquímica e Ingeniería de Proteínas, Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México Ciudad de México, México
                Author notes

                Edited by: Dominique Job, Centre National de la Recherche Scientifique, France

                Reviewed by: Julia Buitink, National Institute for Agricultural Research, France; Tiago Santana Balbuena, São Paulo State University, Brazil

                *Correspondence: Ana P. Barba de la Rosa, apbarba@ 123456ipicyt.edu.mx

                Present address: Alma L. Saucedo, Consejo Nacional de Ciencia y Tecnología, Laboratorio de RMN, Departamento de Química Analítica Facultad de Medicina, Universidad Autónoma de Nuevo León, Av. Madero y Av. Gonzalitos s/n, Colonia Mitras Centro, Monterrey, México; Eric E. Hernández-Domínguez, Consejo Nacional de Ciencia y Tecnología-Instituto de Ecología, A.C. Carretera antigua a Coatepec 351, El Haya, Xalapa de Enríquez, México

                This article was submitted to Plant Proteomics, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2017.00497
                5384071
                28439280
                95f3d360-eaf8-43ff-b3d4-4661c2a2aa06
                Copyright © 2017 Saucedo, Hernández-Domínguez, de Luna-Valdez, Guevara-García, Escobedo-Moratilla, Bojorquéz-Velázquez, del Río-Portilla, Fernández-Velasco and Barba de la Rosa.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 22 December 2016
                : 22 March 2017
                Page count
                Figures: 8, Tables: 1, Equations: 1, References: 84, Pages: 15, Words: 0
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                amaranth seeds,circular dichroism,intrinsically disordered proteins (idp),late embryogenesis abundant (lea) proteins,nuclear magnetic resonance,western blot

                Comments

                Comment on this article