Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ao38, a new cell line from eggs of the black witch moth, Ascalapha odorata (Lepidoptera: Noctuidae), is permissive for AcMNPV infection and produces high levels of recombinant proteins

      research-article
      1 , 2 , 1 ,
      BMC Biotechnology
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The insect cell line is a critical component in the production of recombinant proteins in the baculovirus expression system and new cell lines hold the promise of increasing both quantity and quality of protein production.

          Results

          Seventy cell lines were established by single-cell cloning from a primary culture of cells derived from eggs of the black witch moth ( Ascalapha odorata; Lepidoptera, Noctuidae). Among 8 rapidly growing lines, cell line 38 (Ao38) was selected for further analysis, based on susceptibility to AcMNPV infection and production of secreted alkaline phosphatase (SEAP) from a baculovirus expression vector. In comparisons with low-passage High Five (BTI-Tn-5B1-4) cells, infected Ao38 cells produced β-galactosidase and SEAP at levels higher (153% and 150%, respectively) than those measured from High Five cells. Analysis of N-glycans of SEAP produced in Ao38 cells revealed two N-glycosylation sites and glycosylation patterns similar to those reported for High Five and Sf9 cells. Glycopeptide isoforms consisted of pauci- or oligomannose, with and without fucose on N-acetylglucosamine(s) linked to asparagine residues. Estimates of Ao38 cell volume suggest that Ao38 cells are approximately 2.5× larger than Sf9 cells but only approximately 74% of the size of High Five cells. Ao38 cells were highly susceptible to AcMNPV infection, similar to infectivity of Sf9 cells. Production of infectious AcMNPV budded virions from Ao38 cells peaked at approximately 4.5 × 10 7 IU/ml, exceeding that from High Five cells while lower than that from Sf9 cells. Ao38 cells grew rapidly in stationary culture with a population doubling time of 20.2 hr, and Ao38 cells were readily adapted to serum-free medium (Sf-900III) and to a suspension culture system. Analysis of Ao38 and a parental Ascalapha odorata cell line indicated that these lines were free of the alphanodavirus that was recently identified as an adventitious agent in High Five cell lines.

          Conclusions

          Ao38 cells represent a highly productive new insect cell line that will be useful for heterologous protein expression and other applications in biotechnology.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          The role of protein glycosylation in allergy.

          The asparagine-linked carbohydrate moieties of plant and insect glycoproteins are the most abundant environmental immune determinants. They are the structural basis of what is known as cross-reactive carbohydrate determinants (CCDs). Despite some structural variation, the two main motifs are the xylose and the core-3-linked fucose, which form the essential part of two independent epitopes. Plants contain both epitopes, insect glycoproteins only fucose. These epitopes and other fucosylated determinants are also found in helminth parasites where they exert remarkable immunomodulatory effects. About 20% or more of allergic patients generate specific anti-glycan IgE, which is often accompanied by IgG. Even though antibody-binding glycoproteins are widespread in pollens, foods and insect venoms, CCDs do not appear to cause clinical symptoms in most, if not all patients. When IgE binding is solely due to CCDs, a glycoprotein allergen thus can be rated as clinical irrelevant allergen. Low binding affinity between IgE and plant N-glycans now drops out as a plausible explanation for the benign nature of CCDs. This rather may result from blocking antibodies induced by an incidental 'immune therapy' ('glyco-specific immune therapy') exerted by everyday contact with plant materials, e.g. fruits or vegetables. The need to detect and suppress anti-CCD IgE without interference from peptide epitopes can be best met by artificial glycoprotein allergens. Hydroxyproline-linked arabinose (single beta-arabinofuranosyl residues) has been identified as a new IgE-binding carbohydrate epitope in the major mugwort allergen. However, currently the occurrence of this O-glycan determinant appears to be rather restricted. Copyright 2007 S. Karger AG, Basel.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Protein N-glycosylation in the baculovirus-insect cell expression system and engineering of insect cells to produce "mammalianized" recombinant glycoproteins.

            Baculovirus expression vectors are frequently used to express glycoproteins, a subclass of proteins that includes many products with therapeutic value. The insect cells that serve as hosts for baculovirus vector infection are capable of transferring oligosaccharide side chains (glycans) to the same sites in recombinant proteins as those that are used for native protein N-glycosylation in mammalian cells. However, while mammalian cells produce compositionally more complex N-glycans containing terminal sialic acids, insect cells mostly produce simpler N-glycans with terminal mannose residues. This structural difference between insect and mammalian N-glycans compromises the in vivo bioactivity of glycoproteins and can potentially induce allergenic reactions in humans. These features obviously compromise the biomedical value of recombinant glycoproteins produced in the baculovirus expression vector system. Thus, much effort has been expended to characterize the potential and limits of N-glycosylation in insect cell systems. Discoveries from this research have led to the engineering of insect N-glycosylation pathways for assembly of mammalian-style glycans on baculovirus-expressed glycoproteins. This chapter summarizes our knowledge of insect N-glycosylation pathways and describes efforts to engineer baculovirus vectors and insect cell lines to overcome the limits of insect cell glycosylation. In addition, we consider other possible strategies for improving glycosylation in insect cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Insect immunity and its implication in mosquito-malaria interactions.

              Insects' resistance to infectious agents is essential for their own survival and also for the health of the plant, animal and human populations with which they closely interact. Several of the major human diseases are spread by insects and are rapidly expanding as a result of the development of insecticide resistance in vectors and drug resistance in parasites. A vector insects' permissiveness to a pathogen, and hence the spread of the disease, will largely depend on the compatibility of the molecular interactions between the two species and the capability of the insect immune system to recognize and kill the pathogen. The innate immune system comprises a variety of components and mechanisms that can discriminate between different microorganisms and mount specific responses to control pathogenic infections. An impressive body of knowledge on the insects' innate immunity has been generated from studies in the model organism Drosophila. These studies are now guiding the exploration of the immune system in the vector mosquito of human malaria, Anopheles, and its implication in the elimination of parasites. Anopheles immune responses have been linked to parasite losses and some refractory mosquitoes can kill all parasites through specific defence mechanisms. The recently sequenced Drosophila and Anopheles genomes provide a detailed and comparative view on their immune gene repertoires that in combination with post-genomic analyses is used to further dissect the complex mechanisms of Plasmodium killing in the mosquito.
                Bookmark

                Author and article information

                Journal
                BMC Biotechnol
                BMC Biotechnology
                BioMed Central
                1472-6750
                2010
                5 July 2010
                : 10
                : 50
                Affiliations
                [1 ]Boyce Thompson Institute at Cornell University, Tower Road, Ithaca NY 14853 USA
                [2 ]Proteomics and Mass Spectrometry Facility, Cornell University, Tower Road, Ithaca NY 14853 USA
                Article
                1472-6750-10-50
                10.1186/1472-6750-10-50
                2906426
                20602790
                95f8bd5c-31bb-4b8e-a456-fe6270a4e0ba
                Copyright ©2010 Hashimoto et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 5 February 2010
                : 5 July 2010
                Categories
                Methodology Article

                Biotechnology
                Biotechnology

                Comments

                Comment on this article