30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pacritinib (SB1518), a JAK2/FLT3 inhibitor for the treatment of acute myeloid leukemia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          FMS-like tyrosine kinase 3 ( FLT3) is the most commonly mutated gene found in acute myeloid leukemia (AML) patients and its activating mutations have been proven to be a negative prognostic marker for clinical outcome. Pacritinib (SB1518) is a tyrosine kinase inhibitor (TKI) with equipotent activity against FLT3 (IC 50=22 n) and Janus kinase 2 (JAK2, IC 50=23 n). Pacritinib inhibits FLT3 phosphorylation and downstream STAT, MAPK and PI3 K signaling in FLT3-internal-tandem duplication (ITD), FLT3-wt cells and primary AML blast cells. Oral administration of pacritinib in murine models of FLT3-ITD-driven AML led to significant inhibition of primary tumor growth and lung metastasis. Upregulation of JAK2 in FLT3-TKI-resistant AML cells was identified as a potential mechanism of resistance to selective FLT3 inhibition. This resistance could be overcome by the combined FLT3 and JAK2 activities of pacritinib in this cellular model. Our findings provide a rationale for the clinical evaluation of pacritinib in AML including patients resistant to FLT3-TKI therapy.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Monoclonal antibody-mediated targeting of CD123, IL-3 receptor alpha chain, eliminates human acute myeloid leukemic stem cells.

          Leukemia stem cells (LSCs) initiate and sustain the acute myeloid leukemia (AML) clonal hierarchy and possess biological properties rendering them resistant to conventional chemotherapy. The poor survival of AML patients raises expectations that LSC-targeted therapies might achieve durable remissions. We report that an anti-interleukin-3 (IL-3) receptor alpha chain (CD123)-neutralizing antibody (7G3) targeted AML-LSCs, impairing homing to bone marrow (BM) and activating innate immunity of nonobese diabetic/severe-combined immunodeficient (NOD/SCID) mice. 7G3 treatment profoundly reduced AML-LSC engraftment and improved mouse survival. Mice with pre-established disease showed reduced AML burden in the BM and periphery and impaired secondary transplantation upon treatment, establishing that AML-LSCs were directly targeted. 7G3 inhibited IL-3-mediated intracellular signaling of isolated AML CD34(+)CD38(-) cells in vitro and reduced their survival. These results provide clear validation for therapeutic monoclonal antibody (mAb) targeting of AML-LSCs and for translation of in vivo preclinical research findings toward a clinical application.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways.

            Somatic mutations of the receptor tyrosine kinase Flt3 consisting of internal tandem duplications (ITD) occur in 20% of patients with acute myeloid leukemia. They are associated with a poor prognosis of the disease. In this study, we characterized the oncogenic potential and signaling properties of Flt3 mutations. We constructed chimeric molecules that consisted of the murine Flt3 backbone and a 510-base pair human Flt3 fragment, which contained either 4 different ITD mutants or the wild-type coding sequence. Flt3 isoforms containing ITD mutations (Flt3-ITD) induced factor-independent growth and resistance to radiation-induced apoptosis in 32D cells. Cells containing Flt3-ITD, but not those containing wild-type Flt3 (Flt3-WT), formed colonies in methylcellulose. Injection of 32D/Flt3-ITD induced rapid development of a leukemia-type disease in syngeneic mice. Flt3-ITD mutations exhibited constitutive autophosphorylation of the immature form of the Flt3 receptor. Analysis of the involved signal transduction pathways revealed that Flt3-ITD only slightly activated the MAP kinases Erk1 and 2 and the protein kinase B (Akt) in the absence of ligand and retained ligand-induced activation of these enzymes. However, Flt3-ITD led to strong factor-independent activation of STAT5. The relative importance of the STAT5 and Ras pathways for ITD-induced colony formation was assessed by transfection of dominant negative (dn) forms of these proteins: transfection of dnSTAT5 inhibited colony formation by 50%. Despite its weak constitutive activation by Flt3-ITD, dnRas also strongly inhibited Flt3-ITD-mediated colony formation. Taken together, Flt3-ITD mutations induce factor-independent growth and leukemogenesis of 32D cells that are mediated by the Ras and STAT5 pathways. (Blood. 2000;96:3907-3914)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease.

              FLT3 length mutation (FLT3-LM) is a molecular marker potentially useful for the characterization of acute myeloid leukemia (AML). To evaluate the distribution of FLT3-LM within biologic subgroups, we screened 1003 patients with AML at diagnosis for this mutation. FLT3-LM was found in 234 (23.5%) of all patients and thus is the most frequent mutation in AML described so far. Of all positive patients, 165 (70.5%) revealed a normal karyotype. Of the 69 patients with chromosome aberrations, 24 (34.8%) had a t(15;17). The mutation was rare in AML with t(8;21), inv(16) 11q23 rearrangements, and complex karyotypes. FLT3-LM was not distributed equally within different French-American-British (FAB) subtypes and was correlated with a high peripheral blood count in FAB M1, M2, and M4 (P <.0001). In addition, the median age of patients with the mutation was lower (54.9 vs 57.6 years; P =.043), and, at a ratio of 1.36:1 (P =.023), the mutation was more frequent in females than in males. Within the AMLCG study, FLT3-LM was of intermediate prognostic significance. The complete remission rate of 70.3% in patients with FLT3-LM was similar to that (70.4%) in patients without FLT3-LM. Overall survival was not different between patients with or without FLT3-LM. In contrast, patients with FLT3-LM had a significantly shorter event-free survival (7.4 vs 12.6 months; P =.0072) because of a higher relapse rate. Besides the importance of FLT3-LM for biologic and clinical characterization of AML, we show its value as a marker for disease monitoring based on 120 follow-up samples of 34 patients.
                Bookmark

                Author and article information

                Journal
                Blood Cancer J
                Blood Cancer Journal
                Nature Publishing Group
                2044-5385
                November 2011
                11 November 2011
                1 November 2011
                : 1
                : 11
                : e44
                Affiliations
                [1 ]simpleS*BIO Pte Ltd. , Singapore, Singapore
                [2 ]simpleCancer Science Institute of Singapore, National University of Singapore , Singapore, Singapore
                [3 ]simpleDepartment of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System , Singapore, Singapore
                Author notes
                [* ]simpleS*BIO Pte Ltd. , 1 Science Park Road, #05-09 The Capricorn, Singapore 117528, Singapore. E-mail: stefan.sbio@ 123456gmail.com
                [4]

                These authors contributed equally to this work.

                Article
                bcj201143
                10.1038/bcj.2011.43
                3256753
                22829080
                96721868-f0f2-46d9-a725-86381e2f0336
                Copyright © 2011 Macmillan Publishers Limited

                This work is licensed under the Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/

                History
                : 01 September 2011
                : 15 September 2011
                Categories
                Original Article

                Oncology & Radiotherapy
                flt3,aml,pacritinib,jak2,sb1518
                Oncology & Radiotherapy
                flt3, aml, pacritinib, jak2, sb1518

                Comments

                Comment on this article