15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of mebudipine on oxidative stress and lipid peroxidation in myocardial ischemic-reperfusion injury in male rat

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          Myocardial infarction (MI) is the acute condition of necrosis in myocardium which occurs as a result of imbalance between coronary blood supply and myocardial demand. The resultant oxidative stress excess leads to worsen the condition. The aim of this study was to investigate the effect of mebudipine, a new dihydropyridine calcium channel blocker, on lipid peroxidation and antioxidant enzymes in myocardial ischemia-reperfusion injury.

          Materials and Methods:

          Male Wistar rats (250-300 g) were randomly divided to Control-ischemic, mebudipine-ischemic and vehicle (ethanol-ischemic) groups. The hearts of anaesthetized rats were removed and mounted on Langendorff apparatus and perfused by Krebs-Henseleit solution under constant pressure of 75 mmHg at 37°C. Ischemic groups were received 30 min global ischemia and 120 min reperfusion and the mebudipine and vehicle groups received mebudipine (0.1 nM) or ethanol (0.01%)-enriched solution 25 min before global ischemia. Malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPX) and catalase levels of heart tissue samples were determined by commercial specific Kits.

          Results:

          Mebudipine significantly reduced the MDA level (2.3 ± 0.07 nmol/mg protein) as the biochemical indicator of oxidative damage and lipid peroxidation product as compared with those of vehicle (4.6 ± 0.01 nmol/mg protein) and control groups (4.8 ± 0.09 nmol/mg protein). Furthermore, antioxidant enzymes SOD (0.1 ± 0.006 in drug vs. 0.037 ± 0.009 U/mg Protein in control), GPX (16 ± 0.009 in drug vs. 0.068 ± 0.01 U/mg Protein in control) and catalase activities (0.075 ± 0.006 in drug vs. 0.028 ± 0.002 U/mg Protein in control), activities of myocardium were significantly increased by mebudipine ( P < 0.01).

          Conclusion:

          Our results showed that mebudipine may have antioxidant activity against myocardial ischemia-reperfusion injury since it decreased oxidative stress by enhancing the enzymatic antioxidant defense and inhibiting the lipid peroxidation. Thus, this drug can reduce the intensity of cardiac ischemic insults.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Myocardial ischemia/reperfusion-injury, a clinical view on a complex pathophysiological process.

          Myocardial infarction is the major cause of death in the world. Over the last two decades, coronary reperfusion therapy has become established for the management of acute myocardial infarction (AMI). However, restoration of blood flow to previously ischemic myocardium results in the so-called ischemia/reperfusion (IR)-injury. The different clinical manifestations of this injury include myocardial necrosis, arrhythmia, myocardial stunning and endothelial- and microvascular dysfunction including the no-reflow phenomenon. The pathogenesis of ischemia/reperfusion injury consists of many mechanisms. Recently, there's increasing evidence for an important role in IR-injury on hypercontracture induced by high levels of cytosolic calcium or by low concentrations of ATP. In the last years, many studies on experimental models were investigated, but the clinical trials confirming these effects remain spare. Recently, the beneficial effect of Na(+)/H(+)-exchange inhibitor cariporide and of the oxygen-derived free radical (ODFR) scavenger vitamin E on coronary bypass surgery-induced IR-injury were demonstrated. Also recently, the beneficial effect of allopurinol on the recovery of left ventricular function after rescue balloon-dilatation was demonstrated. The beneficial effect of magnesium and trimetazidine on IR-injury remains controversial. The beneficial effect of adenosine remains to be further confirmed. There's also increasing interest in agentia combining the property of upregulating NO-synthase (e.g. L-arginine) and restoring the balance between NO and free radicals (e.g. tetrahydrobiopterin). One of such agents could be folic acid. In this review article the authors give an overview of the recent insights concerning pathogenesis and therapeutic possibilities to prevent IR-induced injury.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A protein encoded within the Down syndrome critical region is enriched in striated muscles and inhibits calcineurin signaling.

            Here we describe a small family of proteins, termed MCIP1 and MCIP2 (for myocyte-enriched calcineurin interacting protein), that are expressed most abundantly in striated muscles and that form a physical complex with calcineurin A. MCIP1 is encoded by DSCR1, a gene located in the Down syndrome critical region. Expression of the MCIP family of proteins is up-regulated during muscle differentiation, and their forced overexpression inhibits calcineurin signaling to a muscle-specific target gene in a myocyte cell background. Binding of MCIP1 to calcineurin A requires sequence motifs that resemble calcineurin interacting domains found in NFAT proteins. The inhibitory action of MCIP1 involves a direct association with the catalytic domain of calcineurin, rather than interference with the function of downstream components of the calcineurin signaling pathway. The interaction between MCIP proteins and calcineurin may modulate calcineurin-dependent pathways that control hypertrophic growth and selective programs of gene expression in striated muscles.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nitric oxide and cardiac function.

              Nitric oxide (NO) participates in the control of contractility and heart rate, limits cardiac remodeling after an infarction and contributes to the protective effect of ischemic pre- and postconditioning. Low concentrations of NO, with production of small amounts of cGMP, inhibit phosphodiesterase III, thus preventing the hydrolysis of cAMP. The subsequent activation of a protein-kinase A causes the opening of sarcolemmal voltage-operated and sarcoplasmic ryanodin receptor Ca(2+) channels, thus increasing myocardial contractility. High concentrations of NO induce the production of larger amounts of cGMP which are responsible for a cardiodepression in response to an activation of protein kinase G (PKG) with blockade of sarcolemmal Ca(2+) channels. NO is also involved in reduced contractile response to adrenergic stimulation in heart failure. A reduction of heart rate is an evident effect of NO-synthase (NOS) inhibition. It is noteworthy that the direct effect of NOS inhibition can be altered if baroreceptors are stimulated by increases in blood pressure. Finally, NO can limit the deleterious effects of cardiac remodeling after myocardial infarction possibly via the cGMP pathway. The protective effect of NO is mainly mediated by the guanylyl cyclase-cGMP pathway resulting in activation of PKG with opening of mitochondrial ATP-sensitive potassium channels and inhibition of the mitochondrial permeability transition pores. NO acting on heart is produced by vascular and endocardial endothelial NOS, as well as neuronal and inducible synthases. In particular, while in the basal control of contractility, endothelial synthase has a predominant role, the inducible isoform is mainly responsible for the cardiodepression in septic shock.
                Bookmark

                Author and article information

                Journal
                J Res Med Sci
                J Res Med Sci
                JRMS
                Journal of Research in Medical Sciences : The Official Journal of Isfahan University of Medical Sciences
                Medknow Publications & Media Pvt Ltd (India )
                1735-1995
                1735-7136
                December 2012
                : 17
                : 12
                : 1150-1155
                Affiliations
                [1]Applied Drug Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
                [1 ]Molecular Biology Lab, Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran
                Author notes
                Address for correspondence: Dr. Gholamreza Sepehri, Kerman Neuroscience Research Center, Kerman University of Medical Sciences, Kerman, Iran. E-mail: gsepehri@ 123456yahoo.com
                Article
                JRMS-17-1150
                3703167
                23853633
                96aa76ae-c5b4-44da-a6f8-c019cfb5d2af
                Copyright: © Journal of Research in Medical Sciences

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 January 2012
                : 21 October 2012
                : 13 November 2012
                Categories
                Original Article

                Medicine
                ischemia,lipid peroxidation,mebudipine,myocardial,oxidative stress,reperfusion
                Medicine
                ischemia, lipid peroxidation, mebudipine, myocardial, oxidative stress, reperfusion

                Comments

                Comment on this article