6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of isoliquiritigenin as an activator that stimulates the enzymatic production of glycyrrhetinic acid monoglucuronide

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glycyrrhetinic acid monoglucuronide (GAMG) is a great value-added and has considerable commercial interest due to its strong pharmacological activities and functional low-calorie sweetener. However GAMG is quite rare in natural plants, and it must be prepared from glycyrrhizin (GL) by hydrolysing one terminal glucuronic acid. β-Glucuronidase is the key enzyme in the biotransformation of GL to GAMG, but its activities need to be enhanced to facilitate the industrial large-scale production of GAMG. In this study, we identified that isoliquiritigenin (ISL), as one of chemical compositions from the total flavonoids glycyrrhiza (TFG), can significantly enhance β-glucuronidase activity in vitro. Measurements using high-performance liquid chromatography (HPLC) showed that the activity of β-glucuronidase could be increased by 2.66-fold via the addition of ISL to a β-glucuronidase solution that contained GL at a 3:10 molar ratio of ISL to GL. ISL was concluded to be an activator because ISL could reduce the K m and E a of β-glucuronidase reacting with GL. This study sheds new light on the mechanism of β-glucuronidase and helps to make industrial production of GAMG through fermentation feasible.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus.

          The outbreak of SARS warrants the search for antiviral compounds to treat the disease. At present, no specific treatment has been identified for SARS-associated coronavirus infection. We assessed the antiviral potential of ribavirin, 6-azauridine, pyrazofurin, mycophenolic acid, and glycyrrhizin against two clinical isolates of coronavirus (FFM-1 and FFM-2) from patients with SARS admitted to the clinical centre of Frankfurt University, Germany. Of all the compounds, glycyrrhizin was the most active in inhibiting replication of the SARS-associated virus. Our findings suggest that glycyrrhizin should be assessed for treatment of SARS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Acyl-CoA:cholesterol acyltransferases (ACATs/SOATs): Enzymes with multiple sterols as substrates and as activators.

            Cholesterol is essential to the growth and viability of cells. The metabolites of cholesterol include: steroids, oxysterols, and bile acids, all of which play important physiological functions. Cholesterol and its metabolites have been implicated in the pathogenesis of multiple human diseases, including: atherosclerosis, cancer, neurodegenerative diseases, and diabetes. Thus, understanding how cells maintain the homeostasis of cholesterol and its metabolites is an important area of study. Acyl-coenzyme A:cholesterol acyltransferases (ACATs, also abbreviated as SOATs) converts cholesterol to cholesteryl esters and play key roles in the regulation of cellular cholesterol homeostasis. ACATs are most unusual enzymes because (i) they metabolize diverse substrates including both sterols and certain steroids; (ii) they contain two different binding sites for steroidal molecules. In mammals, there are two ACAT genes that encode two different enzymes, ACAT1 and ACAT2. Both are allosteric enzymes that can be activated by a variety of sterols. In addition to cholesterol, other sterols that possess the 3-beta OH at C-3, including PREG, oxysterols (such as 24(S)-hydroxycholesterol and 27-hydroxycholesterol, etc.), and various plant sterols, could all be ACAT substrates. All sterols that possess the iso-octyl side chain including cholesterol, oxysterols, various plant sterols could all be activators of ACAT. PREG can only be an ACAT substrate because it lacks the iso-octyl side chain required to be an ACAT activator. The unnatural cholesterol analogs epi-cholesterol (with 3-alpha OH in steroid ring B) and ent-cholesterol (the mirror image of cholesterol) contain the iso-octyl side chain but do not have the 3-beta OH at C-3. Thus, they can only serve as activators and cannot serve as substrates. Thus, within the ACAT holoenzyme, there are site(s) that bind sterol as substrate and site(s) that bind sterol as activator; these sites are distinct from each other. These features form the basis to further pursue ACAT structure-function analysis, and can be explored to develop novel allosteric ACAT inhibitors for therapeutic purposes. This article is part of a Special Issue entitled 'Steroid/Sterol signaling'.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chemical modification of glycyrrhizic acid as a route to new bioactive compounds for medicine.

              L Baltina (2002)
              Glycyrrhizic Acid (GL) is the major bioactive triterpene glycoside of licorice root (Glycyrrhiza Radix) extracts possessing a wide range of pharmacological properties (anti-inflammatory, anti-ulcer, anti-allergic, anti-dote, anti-oxidant, anti-tumor, anti-viral etc.). Official sources of GL are Glycyrrhiza glabra L. and Gl. uralensis Fish. (Leguminosae). The content of GL in licorice root is 2-24% of the dry weight. GL is one of the leading natural compounds for clinical trials of chronic active viral hepatitis and HIV infections (preparation Stronger Neo-Minophagen C, SNMC), and its monoammonium salt (glycyram, tussilinar) is used as an anti-inflammatory and anti-allergic remedy. The synthetic transformations of GL on carboxyl and hydroxyl groups were carried out to produce new bioactive derivatives for medicine. GL esters were produced containing fragments of bioactive acids (4-nitrobenzoic, cinnamic, salycilic, acetylsalycilic, nicotinic, isonicotinic). Bioactive amides of GL were synthesized using chloroanhydride technique and N,N'-diciclohexylcarbodiimide (DCC) method. The synthesis of acylthioureids and semicarbazones was carried out via the reaction of triacylisothiocianate of penta-O-acetyl-GL with primary amines and hydrazines. The chain of transformations of trichloranhydride of penta-O-acetyl-GL was made with the introduction of diazoketone groups in the molecule. A new group of GL derivatives to be triterpene glycopeptides was prepared by the activated esters method (N-hydrohysuccinimide-DCC or N-hydroxybenzotriazol-DCC) using alkyl (methyl, ethyl, propyl, butyl, tert-butyl) or benzyl (4-nitrobenzyl) esters of amino acids. The glycyrrhizyl analogs of the known immunostimulator, N-acetyl-muramoyldipeptide (MDP), were synthesized using Reagent Woodward K. A series of ureids and carbamates of GL was synthesized containing 5-amino-5-desoxy-D-xylopyranose units. The synthesis of 4-nitro-4-desoxy-glycosides, modified analogs of GL, was carried out by the oxidative splitting of the carbohydrate part of GL with NaIO(4). Triterpene 2-desoxy-D-glycosides, analogs of GL, were prepared by the glycal method in the presence of iodine-containing promoters or sulfonic acid cation-exchange resin KU-2-8 (H+) and LiBr. New anti-inflammatory and anti-ulcer agents were found among GL derivatives such as esters, amides, ureids, carbamates, thioureids and glycopeptides. GL glycopeptides are of interest as immunomodulators. Some of the chemically modified GL derivatives (salts, amides, glycopeptides) were potent HIV-1 and HIV-2 inhibitors in vitro. Preparation niglizin (penta-O-nicotinate of GL) was studied clinically as an anti-inflammatory agent and is of interest for studies as hepatoprotector and HIV inhibitor.
                Bookmark

                Author and article information

                Contributors
                gyliu@bit.edu.cn
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                2 October 2017
                2 October 2017
                2017
                : 7
                : 12503
                Affiliations
                [1 ]ISNI 0000 0000 8841 6246, GRID grid.43555.32, School of Life Science, Beijing Institute of Technology, ; 5 South Zhongguancun Street, Haidian District, Beijing 100081 P.R. China
                [2 ]ISNI 0000000419368729, GRID grid.21729.3f, Mailman School of Public Health, Columbia University, ; New York City, USA
                Author information
                http://orcid.org/0000-0003-4218-6854
                Article
                10154
                10.1038/s41598-017-10154-y
                5624897
                28970510
                96b78e5b-71d1-4143-ae80-7e5b2d7c165a
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 21 April 2017
                : 3 August 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article