+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      IL-1β Processing in Host Defense: Beyond the Inflammasomes

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Stimulation and release of proinflammatory cytokines is an essential step for the activation of an effective innate host defense, and subsequently for the modulation of adaptive immune responses. Interleukin-1β (IL-1β) and IL-18 are important proinflammatory cytokines that on the one hand activate monocytes, macropages, and neutrophils, and on the other hand induce Th1 and Th17 adaptive cellular responses. They are secreted as inactive precursors, and the processing of pro-IL-1β and pro-IL-18 depends on cleavage by proteases. One of the most important of these enzymes is caspase-1, which in turn is activated by several protein platforms called the inflammasomes. Inflammasome activation differs in various cell types, and knock-out mice defective in either caspase-1 or inflammasome components have an increased susceptibility to several types of infections. However, in other infections and in models of sterile inflammation, caspase-1 seems to be less important, and alternative mechanisms such as neutrophil-derived serine proteases or proteases released from microbial pathogens can process and activate IL-1β. In conclusion, IL-1β/IL-18 processing during infection is a complex process in which the inflammasomes are only one of several activation mechanisms.

          Related collections

          Most cited references 77

          • Record: found
          • Abstract: found
          • Article: not found

          Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production.

          Systems for protein degradation are essential for tight control of the inflammatory immune response. Autophagy, a bulk degradation system that delivers cytoplasmic constituents into autolysosomes, controls degradation of long-lived proteins, insoluble protein aggregates and invading microbes, and is suggested to be involved in the regulation of inflammation. However, the mechanism underlying the regulation of inflammatory response by autophagy is poorly understood. Here we show that Atg16L1 (autophagy-related 16-like 1), which is implicated in Crohn's disease, regulates endotoxin-induced inflammasome activation in mice. Atg16L1-deficiency disrupts the recruitment of the Atg12-Atg5 conjugate to the isolation membrane, resulting in a loss of microtubule-associated protein 1 light chain 3 (LC3) conjugation to phosphatidylethanolamine. Consequently, both autophagosome formation and degradation of long-lived proteins are severely impaired in Atg16L1-deficient cells. Following stimulation with lipopolysaccharide, a ligand for Toll-like receptor 4 (refs 8, 9), Atg16L1-deficient macrophages produce high amounts of the inflammatory cytokines IL-1beta and IL-18. In lipopolysaccharide-stimulated macrophages, Atg16L1-deficiency causes Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta (TRIF)-dependent activation of caspase-1, leading to increased production of IL-1beta. Mice lacking Atg16L1 in haematopoietic cells are highly susceptible to dextran sulphate sodium-induced acute colitis, which is alleviated by injection of anti-IL-1beta and IL-18 antibodies, indicating the importance of Atg16L1 in the suppression of intestinal inflammation. These results demonstrate that Atg16L1 is an essential component of the autophagic machinery responsible for control of the endotoxin-induced inflammatory immune response.
            • Record: found
            • Abstract: found
            • Article: not found

            Critical regulation of early Th17 cell differentiation by interleukin-1 signaling.

            T helper (Th) 17 cells have been recently discovered in both mouse and human. Here we show that interleukin-1 (IL-1) signaling on T cells is critically required for the early programming of Th17 cell lineage and Th17 cell-mediated autoimmunity. IL-1 receptor1 expression in T cells, which was induced by IL-6, was necessary for the induction of experimental autoimmune encephalomyelitis and for early Th17 cell differentiation in vivo. Moreover, IL-1 signaling in T cells was required in dendritic cell-mediated Th17 cell differentiation from naive or regulatory precursors and IL-1 synergized with IL-6 and IL-23 to regulate Th17 cell differentiation and maintain cytokine expression in effector Th17 cells. Importantly, IL-1 regulated the expression of the transcription factors IRF4 and RORgammat during Th17 cell differentiation; overexpression of these two factors resulted in IL-1-independent Th17 cell polarization. Our data thus indicate a critical role of IL-1 in Th17 cell differentiation and this pathway may serve as a unique target for Th17 cell-mediated immunopathology.
              • Record: found
              • Abstract: found
              • Article: not found

              Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf.

              Macrophages respond to Salmonella typhimurium infection via Ipaf, a NACHT-leucine-rich repeat family member that activates caspase-1 and secretion of interleukin 1beta. However, the specific microbial salmonella-derived agonist responsible for activating Ipaf is unknown. We show here that cytosolic bacterial flagellin activated caspase-1 through Ipaf but was independent of Toll-like receptor 5, a known flagellin sensor. Stimulation of the Ipaf pathway in macrophages after infection required a functional salmonella pathogenicity island 1 type III secretion system but not the flagellar type III secretion system; furthermore, Ipaf activation could be recapitulated by the introduction of purified flagellin directly into the cytoplasm. These observations raise the possibility that the salmonella pathogenicity island 1 type III secretion system cannot completely exclude 'promiscuous' secretion of flagellin and that the host capitalizes on this 'error' by activating a potent host-defense pathway.

                Author and article information

                Role: Editor
                PLoS Pathog
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                February 2010
                February 2010
                26 February 2010
                : 6
                : 2
                Department of Medicine, Radboud University Nijmegen Medical Center, and Nijmegen Center for Infections, Inflammation and Immunity (N4i), Nijmegen, The Netherlands
                University of California San Diego, United States of America
                Author notes
                Netea et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                Page count
                Pages: 9
                Immunology/Immune Response
                Immunology/Immunity to Infections
                Immunology/Innate Immunity
                Infectious Diseases/Bacterial Infections
                Infectious Diseases/Fungal Infections

                Infectious disease & Microbiology


                Comment on this article