107
views
0
recommends
+1 Recommend
0 collections
    5
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Brain temperature and its fundamental properties: a review for clinical neuroscientists

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Brain temperature, as an independent therapeutic target variable, has received increasingly intense clinical attention. To date, brain hypothermia represents the most potent neuroprotectant in laboratory studies. Although the impact of brain temperature is prevalent in a number of common human diseases including: head trauma, stroke, multiple sclerosis, epilepsy, mood disorders, headaches, and neurodegenerative disorders, it is evident and well recognized that the therapeutic application of induced hypothermia is limited to a few highly selected clinical conditions such as cardiac arrest and hypoxic ischemic neonatal encephalopathy. Efforts to understand the fundamental aspects of brain temperature regulation are therefore critical for the development of safe, effective, and pragmatic clinical treatments for patients with brain injuries. Although centrally-mediated mechanisms to maintain a stable body temperature are relatively well established, very little is clinically known about brain temperature's spatial and temporal distribution, its physiological and pathological fluctuations, and the mechanism underlying brain thermal homeostasis. The human brain, a metabolically “expensive” organ with intense heat production, is sensitive to fluctuations in temperature with regards to its functional activity and energy efficiency. In this review, we discuss several critical aspects concerning the fundamental properties of brain temperature from a clinical perspective.

          Related collections

          Most cited references181

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Multiplicity of cerebrospinal fluid functions: New challenges in health and disease

          This review integrates eight aspects of cerebrospinal fluid (CSF) circulatory dynamics: formation rate, pressure, flow, volume, turnover rate, composition, recycling and reabsorption. Novel ways to modulate CSF formation emanate from recent analyses of choroid plexus transcription factors (E2F5), ion transporters (NaHCO3 cotransport), transport enzymes (isoforms of carbonic anhydrase), aquaporin 1 regulation, and plasticity of receptors for fluid-regulating neuropeptides. A greater appreciation of CSF pressure (CSFP) is being generated by fresh insights on peptidergic regulatory servomechanisms, the role of dysfunctional ependyma and circumventricular organs in causing congenital hydrocephalus, and the clinical use of algorithms to delineate CSFP waveforms for diagnostic and prognostic utility. Increasing attention focuses on CSF flow: how it impacts cerebral metabolism and hemodynamics, neural stem cell progression in the subventricular zone, and catabolite/peptide clearance from the CNS. The pathophysiological significance of changes in CSF volume is assessed from the respective viewpoints of hemodynamics (choroid plexus blood flow and pulsatility), hydrodynamics (choroidal hypo- and hypersecretion) and neuroendocrine factors (i.e., coordinated regulation by atrial natriuretic peptide, arginine vasopressin and basic fibroblast growth factor). In aging, normal pressure hydrocephalus and Alzheimer's disease, the expanding CSF space reduces the CSF turnover rate, thus compromising the CSF sink action to clear harmful metabolites (e.g., amyloid) from the CNS. Dwindling CSF dynamics greatly harms the interstitial environment of neurons. Accordingly the altered CSF composition in neurodegenerative diseases and senescence, because of adverse effects on neural processes and cognition, needs more effective clinical management. CSF recycling between subarachnoid space, brain and ventricles promotes interstitial fluid (ISF) convection with both trophic and excretory benefits. Finally, CSF reabsorption via multiple pathways (olfactory and spinal arachnoidal bulk flow) is likely complemented by fluid clearance across capillary walls (aquaporin 4) and arachnoid villi when CSFP and fluid retention are markedly elevated. A model is presented that links CSF and ISF homeostasis to coordinated fluxes of water and solutes at both the blood-CSF and blood-brain transport interfaces. Outline 1 Overview 2 CSF formation 2.1 Transcription factors 2.2 Ion transporters 2.3 Enzymes that modulate transport 2.4 Aquaporins or water channels 2.5 Receptors for neuropeptides 3 CSF pressure 3.1 Servomechanism regulatory hypothesis 3.2 Ontogeny of CSF pressure generation 3.3 Congenital hydrocephalus and periventricular regions 3.4 Brain response to elevated CSF pressure 3.5 Advances in measuring CSF waveforms 4 CSF flow 4.1 CSF flow and brain metabolism 4.2 Flow effects on fetal germinal matrix 4.3 Decreasing CSF flow in aging CNS 4.4 Refinement of non-invasive flow measurements 5 CSF volume 5.1 Hemodynamic factors 5.2 Hydrodynamic factors 5.3 Neuroendocrine factors 6 CSF turnover rate 6.1 Adverse effect of ventriculomegaly 6.2 Attenuated CSF sink action 7 CSF composition 7.1 Kidney-like action of CP-CSF system 7.2 Altered CSF biochemistry in aging and disease 7.3 Importance of clearance transport 7.4 Therapeutic manipulation of composition 8 CSF recycling in relation to ISF dynamics 8.1 CSF exchange with brain interstitium 8.2 Components of ISF movement in brain 8.3 Compromised ISF/CSF dynamics and amyloid retention 9 CSF reabsorption 9.1 Arachnoidal outflow resistance 9.2 Arachnoid villi vs. olfactory drainage routes 9.3 Fluid reabsorption along spinal nerves 9.4 Reabsorption across capillary aquaporin channels 10 Developing translationally effective models for restoring CSF balance 11 Conclusion
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia.

            A mitochondrial protein called uncoupling protein (UCP1) plays an important role in generating heat and burning calories by creating a pathway that allows dissipation of the proton electrochemical gradient across the inner mitochondrial membrane in brown adipose tissue, without coupling to any other energy-consuming process. This pathway has been implicated in the regulation of body temperature, body composition and glucose metabolism. However, UCP1-containing brown adipose tissue is unlikely to be involved in weight regulation in adult large-size animals and humans living in a thermoneutral environment (one where an animal does not have to increase oxygen consumption or energy expenditure to lose or gain heat to maintain body temperature), as there is little brown adipose tissue present. We now report the discovery of a gene that codes for a novel uncoupling protein, designated UCP2, which has 59% amino-acid identity to UCP1, and describe properties consistent with a role in diabetes and obesity. In comparison with UCP1, UCP2 has a greater effect on mitochondrial membrane potential when expressed in yeast. Compared to UCP1, the gene is widely expressed in adult human tissues, including tissues rich in macrophages, and it is upregulated in white fat in response to fat feeding. Finally, UCP2 maps to regions of human chromosome 11 and mouse chromosome 7 that have been linked to hyperinsulinaemia and obesity. Our findings suggest that UCP2 has a unique role in energy balance, body weight regulation and thermoregulation and their responses to inflammatory stimuli.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Skin blood flow in adult human thermoregulation: how it works, when it does not, and why.

              The thermoregulatory control of human skin blood flow is vital to the maintenance of normal body temperatures during challenges to thermal homeostasis. Sympathetic neural control of skin blood flow includes the noradrenergic vasoconstrictor system and a sympathetic active vasodilator system, the latter of which is responsible for 80% to 90% of the substantial cutaneous vasodilation that occurs with whole body heat stress. With body heating, the magnitude of skin vasodilation is striking: skin blood flow can reach 6 to 8 L/min during hyperthermia. Cutaneous sympathetic vasoconstrictor and vasodilator systems also participate in baroreflex control of blood pressure; this is particularly important during heat stress, when such a large percentage of cardiac output is directed to the skin. Local thermal control of cutaneous blood vessels also contributes importantly--local warming of the skin can cause maximal vasodilation in healthy humans and includes roles for both local sensory nerves and nitric oxide. Local cooling of the skin can decrease skin blood flow to minimal levels. During menopause, changes in reproductive hormone levels substantially alter thermoregulatory control of skin blood flow. This altered control might contribute to the occurrence of hot flashes. In type 2 diabetes mellitus, the ability of skin blood vessels to dilate is impaired. This impaired vasodilation likely contributes to the increased risk of heat illness in this patient population during exposure to elevated ambient temperatures. Raynaud phenomenon and erythromelalgia represent cutaneous microvascular disorders whose pathophysiology appears to relate to disorders of local and/or reflex thermoregulatory control of the skin circulation.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Neurosci
                Front Neurosci
                Front. Neurosci.
                Frontiers in Neuroscience
                Frontiers Media S.A.
                1662-4548
                1662-453X
                08 October 2014
                2014
                : 8
                : 307
                Affiliations
                [1] 1Department of Neurosurgery, Carle Foundation Hospital, University of Illinois College of Medicine at Urbana-Champaign Urbana, IL, USA
                [2] 2Thermal Neuroscience Laboratory, Beckman Institute, University of Illinois at Urbana-Champaign Urbana, IL, USA
                [3] 3Department of Internal Medicine, Carle Foundation Hospital, University of Illinois College of Medicine at Urbana-Champaign Urbana, IL, USA
                [4] 4Department of Internal Medicine, College of Medicine at Urbana-Champaign, University of Illinois Champaign, Urbana, IL, USA
                [5] 5Department of Molecular and Integrative Physiology, University of Illinois College of Medicine at Urbana-Champaign Urbana, IL, USA
                [6] 6Neuroscience Program, University of Illinois at Urbana-Champaign Urbana, IL, USA
                [7] 7Molecular and Cellular Biology, University of Illinois at Urbana-Champaign Urbana, IL, USA
                [8] 8Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School Boston, MA, USA
                Author notes

                Edited by: Kathleen Dave, Harvard University, USA

                Reviewed by: Eugene A. Kiyatkin, National Institute on Drug Abuse, USA; Melanie L. Shoup-Knox, James Madison University, USA

                *Correspondence: Huan Wang, Department of Neurosurgery, Carle Foundation Hospital, University of Illinois College of Medicine at Urbana-Champaign, Urbana, IL 60801, USA; Thermal Neuroscience Laboratory, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 60801, USA e-mail: huanwang@ 123456illinois.edu

                This article was submitted to Systems Biology, a section of the journal Frontiers in Neuroscience.

                Article
                10.3389/fnins.2014.00307
                4189373
                25339859
                97c47e0a-2811-459f-801d-b02ab225187f
                Copyright © 2014 Wang, Wang, Normoyle, Jackson, Spitler, Sharrock, Miller, Best, Llano and Du.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 03 March 2014
                : 12 September 2014
                Page count
                Figures: 2, Tables: 0, Equations: 0, References: 230, Pages: 17, Words: 16301
                Categories
                Physiology
                Review Article

                Neurosciences
                brain,temperature,cerebral blood flow,hypothermia,hyperthermia
                Neurosciences
                brain, temperature, cerebral blood flow, hypothermia, hyperthermia

                Comments

                Comment on this article