15
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Terrestrial isopods as model organisms in soil ecotoxicology: a review

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract

          Isopods play an important role in the decomposition of leaf litter and therefore are making a significant contribution to nutrient cycling and soil ecosystem services. As a consequence, isopods are relevant models in soil ecotoxicology, both in laboratory toxicity tests and in field monitoring and bioindication studies. This paper aims at reviewing the use of isopods as test organisms in soil ecotoxicology. It provides an overview of the use of isopods in laboratory toxicity tests, with special focus on comparing different exposure methods, test durations, and ecotoxicological endpoints. A brief overview of toxicity data suggests that chemicals are more toxic to isopods when exposed through soil compared to food. The potential of isopods to be used in bioindication and biomonitoring is discussed. Based on the overview of toxicity data and test methods, recommendations are given for the use of isopods in standardized laboratory toxicity tests as well as in situ monitoring studies.

          Related collections

          Most cited references142

          • Record: found
          • Abstract: not found
          • Article: not found

          A new puffing pattern induced by temperature shock and DNP in drosophila

          F Ritossa (1962)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Microplastic Incorporation into Soil in Agroecosystems

            Background We live in a plastic age (Thompson et al., 2009), with microplastic (typically defined as plastic particles 0.08 mm) generally enhance movement of particles, because sedimentation and sieving are not as pronounced, and they enhance the movement of water. This means that all players affecting the presence of macropores will indirectly influence the efficiency with which microplastic particles are moved in soil. The most important producers of biopores, macropores of typically tubular shape, are earthworms and roots. In addition, soil aggregation, a joint physiochemical/ biotic process, leaves macropores in between structural units, the aggregates. Experimental data for earthworms already exist (e.g., Rillig et al., 2017), even though in these studies active earthworms were present, and it is therefore not clear what percentage of microplastic particles moved through existing earthworm biopores rather than with the animals. There are no data on roots, however. Especially in agricultural systems, after harvest, this could be a massive transport pathway as roots decompose, leaving biopores. Root systems differ widely, for example in terms of depth and also in terms of fineness. One could expect that deeply rooted plants with coarser roots may be most effective at facilitating the movement of particles. Soil cracking and wet-dry cycles In agricultural soils with expanding mineral types, e.g., montmorillonite, cracks, and fissures can appear when soil dries. These cracks are open entryways for particles, that in this way could potentially move to substantial depths, very quickly arriving at deeper soil layers. Wet-dry cycles have been experimentally shown to directly mobilize colloid-sized particles in soils at a smaller scale (Majdalani et al., 2008), an effect the authors attributed to soil matrix weakening; similar patterns likely also hold for freeze-thaw cycles. Sequestration inside soil aggregates Microplastic particles will likely become embedded inside of soil aggregates, even though the extent to which this happens is unknown. Soil aggregation is a dynamic process, with aggregates being formed and disintegrating. During formation of macroaggregates in hierarchically structured soils, microplastic particles, and microaggregates (< 0.250 mm) will be included along with organic matter, microbes, and primary soil particles (Tisdall and Oades, 1982). During the persistence of macroaggregates, which can range range to weeks and months (Peng et al., 2017), the microplastic particles contained therein would be retained in the soil profile. Soil biota Other than as producers of biopores, soil biota can actively contribute to the movement of microplastic particles. Recently, microarthropods (collembola) have been shown to be able to move microplastic beads in a laboratory arena (Maaß et al., 2017). Such active, incidental, relatively small-scale transport could spread microplastic particles also horizontally, which may facilitate their subsequent entry into the soil. Similar effects can also be expected for mites, even though there is no experimental evidence yet. Perhaps fungal hyphae may also serve as preferential paths for movement of particles in the cm-range, as has been demonstrated for the transport of bacterial cells (Wick et al., 2007). The general literature on particle transport in soil by bioturbation (Gabet et al., 2003) also suggests that plant processes (e.g., root growth, uprooting) and various animals (earthworms, various larvae, vertebrates) can contribute to particle movement. Plowing and harvesting In agroecosystems, plowing is a widespread practice, and through this activity microplastic particles can be very effectively moved into the soil to the depth of the plow. Different tillage practices affect different soil layers and thus the depth to which microplastic can be incorporated. For instance, conventional tillage practices affect usually the first 20–30 cm, while in no-tillage soil disturbance, to place the seeds, affects only the very top soil layer, generally a few centimeters (Paustian et al., 1997). In addition, under conventional tillage different types of plowing may differ in the extent to which they facilitate microplastic incorporation along the layer affected by the machinery. Moaldboard plowing brings about an inversion of the respective soil layer, with the consequence that microplastic present at the soil surface will mostly be brought to a single layer at the plowing depth. By contrast, other tillage practices such as shallow hallowing or harrowing, have a mixing effect, likely resulting in the distribution of the microplastic particles throughout the tillage layer. Harvesting especially of plant portions below the soil surface (e.g., potatoes, carrots) can also serve to incorporate microplastic, albeit to a shallower depth, depending on the crop. Research needs and conclusions There are clear research needs that emerge from the discussion above: Dedicated column experiments in the laboratory, and eventually in the field, will be necessary to estimate rates of movement of microplastic particles, and to disentangle the relative roles of the various factors potentially influencing movement. This should include an assessment of risk for microplastics reaching groundwater. Such experiments and other studies should not only include beads or approximately spherical particles but also fibers and other plastic particles. There is very little we know about the behavior of microplastic fibers in soil, despite their likely prominence (e.g., Zubris and Richards, 2005; Hartline et al., 2016; Hernandez et al., 2017). Interactions with soil aggregates should be a focus, because microplastic particles could be incorporated into soil aggregates, thereby immobilizing these particles. However, this also likely protects microplastics from microbial breakdown, increasing overall residence time; and given the aggregate dynamics, particles would be continuously re-released. Additionally, it is unclear what effects microplastics have on the soil aggregation process itself, which could affect macropores and ultimately particle movement. Such future work is important: particles remaining at the surface could be moved around the landscape with potentially undesirable effects, but particles in the soil could have mostly unknown effects on soil biota and crop plants, possibly affecting food security. And, when microplastic particles move further through the soil profile, they would eventually also end up in groundwater. The contamination of subterranean waters with microplastic is of particular concern because they could have direct implications for human and animal health. Additionally, as a consequence of abrasion, chemical, or biodegradation occurring during transport, nanoplastic particles could be produced, posing fundamentally different hazards. Many aspects discussed here also pertain to soils in other terrestrial ecosystems; however, it is evident that the specific combination of machinery-driven soil preparation, crop cultivation, and harvest dynamics, and unique microplastic exposure pathways make agricultural soils particularly vulnerable and important to study. Author contributions MR: wrote the first draft of the paper; RI and AM: contributed ideas and text. Conflict of interest statement The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ambient air pollution, climate change, and population health in China.

              As the largest developing country, China has been changing rapidly over the last three decades and its economic expansion is largely driven by the use of fossil fuels, which leads to a dramatic increase in emissions of both ambient air pollutants and greenhouse gases (GHGs). China is now facing the worst air pollution problem in the world, and is also the largest emitter of carbon dioxide. A number of epidemiological studies on air pollution and population health have been conducted in China, using time-series, case-crossover, cross-sectional, cohort, panel or intervention designs. The increased health risks observed among Chinese population are somewhat lower in magnitude, per amount of pollution, than the risks found in developed countries. However, the importance of these increased health risks is greater than that in North America or Europe, because the levels of air pollution in China are very high in general and Chinese population accounts for more than one fourth of the world's totals. Meanwhile, evidence is mounting that climate change has already affected human health directly and indirectly in China, including mortality from extreme weather events; changes in air and water quality; and changes in the ecology of infectious diseases. If China acts to reduce the combustion of fossil fuels and the resultant air pollution, it will reap not only the health benefits associated with improvement of air quality but also the reduced GHG emissions. Consideration of the health impact of air pollution and climate change can help the Chinese government move forward towards sustainable development with appropriate urgency. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Zookeys
                Zookeys
                ZooKeys
                ZooKeys
                Pensoft Publishers
                1313-2989
                1313-2970
                2018
                3 December 2018
                : 801
                : 127-162
                Affiliations
                [1 ] Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands Vrije University Amsterdam Netherlands
                [2 ] University of Aveiro, Department of Biology and the Centre for Environmental and Marine Studies, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal University of Aveiro Aveiro Portugal
                [3 ] Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia University of Ljubljana Ljubljana Slovenia
                Author notes
                Corresponding author: Cornelis A.M. van Gestel ( kees.van.gestel@ 123456vu.nl )

                Academic editor: E. Hornung

                Article
                10.3897/zookeys.801.21970
                6288250
                97e6f7db-baa7-45bd-affd-9007621c9e45
                Cornelis A.M. van Gestel, Susana Loureiro, Primož idar

                This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 31 October 2017
                : 5 December 2017
                Categories
                Review Article
                Crustacea
                Ecological Risk Assessment
                Environmental Impact Assessment
                Environmental Pollution
                Europe

                Animal science & Zoology
                bioaccumulation,biomonitoring,indicator organisms, isopoda ,toxicity tests

                Comments

                Comment on this article