23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High-Throughput Optofluidic Acquisition of Microdroplets in Microfluidic Systems

      review-article
      , *
      Micromachines
      MDPI
      microfluidics, droplets, optofluidics

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Droplet optofluidics technology aims at manipulating the tiny volume of fluids confined in micro-droplets with light, while exploiting their interaction to create “digital” micro-systems with highly significant scientific and technological interests. Manipulating droplets with light is particularly attractive since the latter provides wavelength and intensity tunability, as well as high temporal and spatial resolution. In this review study, we focus mainly on recent methods developed in order to monitor real-time analysis of droplet size and size distribution, active merging of microdroplets using light, or to use microdroplets as optical probes.

          Related collections

          Most cited references127

          • Record: found
          • Abstract: not found
          • Article: not found

          Microfluidics: Fluid physics at the nanoliter scale

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microfluidic large-scale integration.

            We developed high-density microfluidic chips that contain plumbing networks with thousands of micromechanical valves and hundreds of individually addressable chambers. These fluidic devices are analogous to electronic integrated circuits fabricated using large-scale integration. A key component of these networks is the fluidic multiplexor, which is a combinatorial array of binary valve patterns that exponentially increases the processing power of a network by allowing complex fluid manipulations with a minimal number of inputs. We used these integrated microfluidic networks to construct the microfluidic analog of a comparator array and a microfluidic memory storage device whose behavior resembles random-access memory.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dynamic pattern formation in a vesicle-generating microfluidic device.

              Spatiotemporal pattern formation occurs in a variety of nonequilibrium physical and chemical systems. Here we show that a microfluidic device designed to produce reverse micelles can generate complex, ordered patterns as it is continuously operated far from thermodynamic equilibrium. Flow in a microfluidic system is usually simple-viscous effects dominate and the low Reynolds number leads to laminar flow. Self-assembly of the vesicles into patterns depends on channel geometry and relative fluid pressures, enabling the production of motifs ranging from monodisperse droplets to helices and ribbons.
                Bookmark

                Author and article information

                Journal
                Micromachines (Basel)
                Micromachines (Basel)
                micromachines
                Micromachines
                MDPI
                2072-666X
                14 April 2018
                April 2018
                : 9
                : 4
                : 183
                Affiliations
                Laboratoire de Photonique Quantique et Moléculaire, UMR 8537, Ecole Normale Supérieure Paris Saclay, CentraleSupélec, CNRS, Université Paris-Saclay, 61 avenue du Président Wilson, 94235 Cachan, France; zain.hayat@ 123456ens-paris-saclay.fr
                Author notes
                [* ]Correspondence: abdel.el-abed@ 123456ens-paris-saclay.fr ; Tel.: +33-147-405-562
                Author information
                https://orcid.org/0000-0002-8546-1230
                https://orcid.org/0000-0002-3324-2300
                Article
                micromachines-09-00183
                10.3390/mi9040183
                6187520
                9802422e-5445-47f2-9f7d-c5688385d98c
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 27 February 2018
                : 04 April 2018
                Categories
                Review

                microfluidics,droplets,optofluidics
                microfluidics, droplets, optofluidics

                Comments

                Comment on this article