20
views
0
recommends
+1 Recommend
1 collections
    1
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparative cytogenetics of the ground frogs Eupsophus emiliopugini Formas, 1989 and E. vertebralis Grandison, 1961 (Alsodidae) with comments on their inter- and intraspecific chromosome differentiation

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract

          South American frogs of the genus Eupsophus Fitzinger, 1843 comprise 10 species. Two of them, Eupsophus vertebralis Grandison, 1961 and E. emiliopugini Formas, 1989 belong to the Eupsophus vertebralis group, exhibiting 2n = 28. Fundamental number differences between these species have been described using conventional chromosome staining of few specimens from only two localities. Here, classical techniques (Giemsa, C-banding, CMA 3/DAPI banding, and Ag-NOR staining), and fluorescence in situ hybridization (FISH, with telomeric and 28S ribosomal probes), were applied on individuals of both species collected from 15 localities. We corroborate differences in fundamental numbers (FN) between E. vertebralis and E. emiliopugini through Giemsa staining and C-banding (FN = 54 and 56, respectively). No interstitial fluorescent signals, but clearly stained telomeric regions were detected by FISH using telomeric probe over spreads from both species. FISH with 28S rDNA probes and Ag-NOR staining confirmed the active nucleolus organizer regions signal on pair 5 for both species. Nevertheless, one E. emiliopugini individual from the Puyehue locality exhibited 28S ribosomal signals on pairs 4 and 5. Interestingly, only one chromosome of each pair showed Ag-NOR positive signals, showing a nucleolar dominance pattern. Chromosomal rearrangements, rRNA gene dosage control, mobile NORs elements, and/or species hybridization process could be involved in this interpopulation chromosomal variation.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: not found
          • Article: not found

          Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reverse fluorescent chromosome banding with chromomycin and DAPI.

            Two DNA binding guanine-specific antibiotics, chromomycin A3 (CMA) and the closely related mithramycin (MM), were used as chromosome fluorescent dyes. Root-tip metaphase chromosomes of three plant species and human metaphase chromosomes were sequentially stained with CMA or MM and the DNA binding AT-specific fluorochrome 4'-6-diamidino-2-phenylindole (DAPI). In some cases a non-fluorescent counterstain was used as contrasting agent: methyl green in conjunction with CMA, and actinomycin D (AMD) in combination with DAPI.--In all three plant species, Vicia faba, Scilla siberica, and Ornithogalum caudatum, the nucleolus organiser regions and/or associated heterochromatin displayed very bright fluorescence with CMA and MM and, in general, heterochromatic segments (C-bands) which were bright with CMA and MM were pale with DAPI whereas segments which were dim with CMA and MM displayed very bright fluorescence with DAPI.--Human metaphase chromosomes showed a small longitudinal differentiation in CMA fluorescence, which was essentially the reverse of the banding pattern obtained with AMD/DAPI double-staining, but of lower contrast. The cma-banding pattern appears to be similar to the pattern found by R-banding procedures.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Nucleolar organizer regions: genomic ‘dark matter’ requiring illumination

              In this review, McStay discusses recent findings regarding the morphology of active nucleolar organizer regions (NORs) and how they seed rapid nucleolar reformation after cell division. Nucleoli form around tandem arrays of a ribosomal gene repeat, termed nucleolar organizer regions (NORs). During metaphase, active NORs adopt a characteristic undercondensed morphology. Recent evidence indicates that the HMG-box-containing DNA-binding protein UBF (upstream binding factor) is directly responsible for this morphology and provides a mitotic bookmark to ensure rapid nucleolar formation beginning in telophase in human cells. This is likely to be a widely employed strategy, as UBF is present throughout metazoans. In higher eukaryotes, NORs are typically located within regions of chromosomes that form perinucleolar heterochromatin during interphase. Typically, the genomic architecture of NORs and the chromosomal regions within which they lie is very poorly described, yet recent evidence points to a role for context in their function. In Arabidopsis , NOR silencing appears to be controlled by sequences outside the rDNA (ribosomal DNA) array. Translocations reveal a role for context in the expression of the NOR on the X chromosome in Drosophila . Recent work has begun on characterizing the genomic architecture of human NORs. A role for distal sequences located in perinucleolar heterochromatin has been inferred, as they exhibit a complex transcriptionally active chromatin structure. Links between rDNA genomic stability and aging in Saccharomyces cerevisiae are now well established, and indications are emerging that this is important in aging and replicative senescence in higher eukaryotes. This, combined with the fact that rDNA arrays are recombinational hot spots in cancer cells, has focused attention on DNA damage responses in NORs. The introduction of DNA double-strand breaks into rDNA arrays leads to a dramatic reorganization of nucleolar structure. Damaged rDNA repeats move from the nucleolar interior to form caps at the nucleolar periphery, presumably to facilitate repair, suggesting that the chromosomal context of human NORs contributes to their genomic stability. The inclusion of NORs and their surrounding chromosomal environments in future genome drafts now becomes a priority.
                Bookmark

                Author and article information

                Contributors
                Journal
                Comp Cytogenet
                Comp Cytogenet
                8
                urn:lsid:arphahub.com:pub:A71ED5FC-60ED-5DA3-AC8E-F6D2BB5B3573
                urn:lsid:zoobank.org:pub:C8FA3ADA-5585-4F26-9215-A520EE683979
                Comparative Cytogenetics
                Pensoft Publishers
                1993-0771
                1993-078X
                2020
                27 January 2020
                : 14
                : 1
                : 61-74
                Affiliations
                [1 ] Instituto de Ciencias Marinas y Limnólogicas, Universidad Austral de Chile, Edificio Emilio Pugin, Campus Isla Teja S/N, Casilla 567, Valdivia, Chile Universidad Austral de Chile Valdivia Chile
                [2 ] Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Distrito de Rubião Junior, s/n, 18618-970, Botucatu, São Paulo, Brazil Universidade Estadual Paulista Botucatu Brazil
                Author notes
                Corresponding author: Camila A. Quercia ( camilaquerciar@ 123456gmail.com )

                Academic editor: N. Golub

                Article
                46852
                10.3897/CompCytogen.v14i1.46852
                6997241
                9821b0af-2a0e-4d9b-8ff2-05e24382349f
                Camila A. Quercia, Elkin Y. Suárez-Villota, Fausto Foresti, José J. Nuñez

                This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 27 September 2019
                : 10 December 2019
                Categories
                Research Article
                Amphibia
                Evolutionary biology
                Molecular Cytogenetics
                Cenozoic
                Americas
                Chile

                karyotype variations,fish,patagonian frogs,ribosomal probe,nor polymorphism

                Comments

                Comment on this article