Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effect of ANGPTL7 on Proliferation and Differentiation of MC3T3-E1 Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Angiopoietin-like proteins (ANGPTL) are a family of secretory glycoproteins that are involved in many pathophysiological processes. ANGPTL7 is a newly-discovered member of the ANGPTL family and plays a role in corneal morphogenesis, angiogenesis, glaucoma, and cancer. To date, whether ANGPTL7 is involved in osteoporosis is unknown. Therefore, to discover the effects of ANGPTL7 on osteoporosis, we explored the expression of ANGPTL7 in preosteoblasts and assessed the mechanism underlying its effects on proliferation and differentiation abilities of preosteoblasts.

          Material/Methods

          Mouse MC3T3-E1 cells were cultured in osteogenic medium for osteogenic differentiation. The expression levels of ANGPTL7 were detected by RT-qPCR and Western blot assays. Moreover, the overexpressed plasmid of ANGPTL7 pMSCV-ANGPTL7 was transfected into MC3T3-E1 cells. CCK-8 was used to evaluate cell proliferation. ALP activity detection and alizarin red staining were performed to measure the effect of ANGPTL7 on osteogenic differentiation. The expression levels bone morphogenetic proteins (BMPs) and osteogenic markers ALP, runt-related transcription factor 2 (Runx2), osteocalcin (OCN), and collagen I (Col I) were analyzed by Western blot.

          Results

          When MC3T3-E1 cells were exposed to osteogenic medium, there was a significant increase in ANGPTL7, and overexpression of ANGPTL7 markedly promoted cell proliferation, ALP activity, and mineralization. Moreover, ANGPTL7 upregulated the levels of BMPs, especially BMP2/7, and the osteogenic markers ALP, Runx2, OCN, and Col I.

          Conclusions

          The results suggest that by regulating the expression of BMPs, ANGPTL7 directly promotes proliferation, differentiation, and mineralization of osteoblasts.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Osteoporosis treatment: recent developments and ongoing challenges.

          Osteoporosis is an enormous and growing public health problem. Once considered an inevitable consequence of ageing, it is now eminently preventable and treatable. Ironically, despite tremendous therapeutic advances, there is an increasing treatment gap for patients at high fracture risk. In this Series paper, we trace the evolution of drug therapy for osteoporosis, which began in the 1940s with the demonstration by Fuller Albright that treatment with oestrogen could reverse the negative calcium balance that developed in women after menopause or oophorectomy. We note a watershed in osteoporosis drug discovery around the year 2000, when the approach to developing novel therapeutics shifted from one driven by discoveries in animal studies and clinical observations (eg, oestrogen, calcitonin, and teriparatide) or opportunistic repurposing of existing compounds (eg, bisphosphonates) to one driven by advances in fundamental bone biology (eg, denosumab) coupled with clues from patients with rare bone diseases (eg, romosozumab, odanacatib). Despite these remarkable advances, concerns about rare side-effects of anti-resorptive drugs, particularly bisphosphonates, and the absence of clear evidence in support of their long-term efficacy is leading many patients who could benefit from drug therapy to not take these drugs. As such, there remains an important clinical need to develop ways to enhance patient acceptance and compliance with these effective drugs, and to continue to develop new drugs that do not cause these side-effects and have prolonged anabolic effects on bone. Such changes could lead to a true reversal of this potentially devastating disease of ageing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Natural products for treatment of osteoporosis: The effects and mechanisms on promoting osteoblast-mediated bone formation.

            Osteoporosis is a systemic metabolic bone disease characterized by a reduction in bone mass, bone quality, and microarchitectural deterioration. An imbalance in bone remodeling that is caused by more osteoclast-mediated bone resorption than osteoblast-mediated bone formation results in such pathologic bone disorder. Traditional Chinese medicines (TCM) have long been used to prevent and treat osteoporosis and have received extensive attentions and researches at home and abroad, because they have fewer adverse reactions and are more suitable for long-term use compared with chemically synthesized medicines. Here, we put the emphasis on osteoblasts, summarized the detailed research progress on the active compounds derived from TCM with potential anti-osteoporosis effects and their molecular mechanisms on promoting osteoblast-mediated bone formation. It could be concluded that TCM with kidney-tonifying, spleen-tonifying, and stasis-removing effects all have the potential effects on treating osteoporosis. The active ingredients derived from TCM that possess effects on promoting osteoblasts proliferation and differentiation include flavonoids, glycosides, coumarins, terpenoids (sesquiterpenoids, monoterpenoids, diterpenoids), phenolic acids, phenols and others (tetrameric stilbene, anthraquinones, diarylheptanoids). And it was confirmed that the bone formation effect induced by the above natural products was regulated by the expressions of bone specific matrix proteins (ALP, BSP, OCN, OPN, COL I), transcription factor (Runx2, Cbfa1, Osx), signal pathways (MAPK, BMP), local factors (ROS, NO), OPG/RANKL system of osteoblasts and estrogen-like biological activities. All the studies provided theoretical basis for clinical application, as well as new drug research and development on treating osteoporosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              AMERICAN ASSOCIATION OF CLINICAL ENDOCRINOLOGISTS AND AMERICAN COLLEGE OF ENDOCRINOLOGY CLINICAL PRACTICE GUIDELINES FOR THE DIAGNOSIS AND TREATMENT OF POSTMENOPAUSAL OSTEOPOROSIS - 2016.

              AACE = American Association of Clinical Endocrinologists AFF = atypical femur fracture ASBMR = American Society for Bone and Mineral Research BEL = best evidence level BMD = bone mineral density BTM = bone turnover marker CBC = complete blood count CI = confidence interval DXA = dual-energy X-ray absorptiometry EL = evidence level FDA = U.S. Food and Drug Administration FLEX = Fracture Intervention Trial (FIT) Long-term Extension FRAX®= Fracture Risk Assessment Tool GFR = glomerular filtration rate GI = gastrointestinal HORIZON = Health Outcomes and Reduced Incidence with Zoledronic Acid Once Yearly IOF = International Osteoporosis Foundation ISCD = International Society for Clinical Densitometry IU = international units IV = intravenous LSC = least significant change NBHA = National Bone Health Alliance NOF = National Osteoporosis Foundation 25(OH)D = 25-hydroxy vitamin D ONJ = osteonecrosis of the jaw PINP = serum carboxy-terminal propeptide of type I collagen PTH = parathyroid hormone R = recommendation RANK = receptor activator of nuclear factor kappa-B RANKL = receptor activator of nuclear factor kappa-B ligand RCT = randomized controlled trial RR = relative risk S-CTX = serum C-terminal telopeptide SQ = subcutaneous VFA = vertebral fracture assessment WHO = World Health Organization.
                Bookmark

                Author and article information

                Journal
                Med Sci Monit
                Med. Sci. Monit
                Medical Science Monitor
                Medical Science Monitor : International Medical Journal of Experimental and Clinical Research
                International Scientific Literature, Inc.
                1234-1010
                1643-3750
                2019
                13 December 2019
                : 25
                : 9524-9530
                Affiliations
                [1 ]Department of Orthopedic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiang’su, P.R. China
                [2 ]Department of Orthopedics, The Affiliated Huai’an Hospital of Xuzhou Medical University, The Second People’s Hospital of Huai’an, Huai’an, Jiang’su, P.R. China
                Author notes
                Corresponding Author: YouJia Xu, e-mail: PDXYoujia@ 123456163.com
                [A]

                Study Design

                [B]

                Data Collection

                [C]

                Statistical Analysis

                [D]

                Data Interpretation

                [E]

                Manuscript Preparation

                [F]

                Literature Search

                [G]

                Funds Collection

                Article
                918333
                10.12659/MSM.918333
                6929564
                31835268
                9837a5f2-9c0e-4e22-a983-41a1767875e7
                © Med Sci Monit, 2019

                This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International ( CC BY-NC-ND 4.0)

                History
                : 26 June 2019
                : 12 September 2019
                Categories
                Lab/In Vitro Research

                angiopoietins,cell dedifferentiation,cell proliferation,osteoporosis

                Comments

                Comment on this article