0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Beyond natural aromas: The bioactive and technological potential of monoterpenes

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references164

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules

          To be effective as a drug, a potent molecule must reach its target in the body in sufficient concentration, and stay there in a bioactive form long enough for the expected biologic events to occur. Drug development involves assessment of absorption, distribution, metabolism and excretion (ADME) increasingly earlier in the discovery process, at a stage when considered compounds are numerous but access to the physical samples is limited. In that context, computer models constitute valid alternatives to experiments. Here, we present the new SwissADME web tool that gives free access to a pool of fast yet robust predictive models for physicochemical properties, pharmacokinetics, drug-likeness and medicinal chemistry friendliness, among which in-house proficient methods such as the BOILED-Egg, iLOGP and Bioavailability Radar. Easy efficient input and interpretation are ensured thanks to a user-friendly interface through the login-free website http://www.swissadme.ch. Specialists, but also nonexpert in cheminformatics or computational chemistry can predict rapidly key parameters for a collection of molecules to support their drug discovery endeavours.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular properties that influence the oral bioavailability of drug candidates.

              Oral bioavailability measurements in rats for over 1100 drug candidates studied at SmithKline Beecham Pharmaceuticals (now GlaxoSmithKline) have allowed us to analyze the relative importance of molecular properties considered to influence that drug property. Reduced molecular flexibility, as measured by the number of rotatable bonds, and low polar surface area or total hydrogen bond count (sum of donors and acceptors) are found to be important predictors of good oral bioavailability, independent of molecular weight. That on average both the number of rotatable bonds and polar surface area or hydrogen bond count tend to increase with molecular weight may in part explain the success of the molecular weight parameter in predicting oral bioavailability. The commonly applied molecular weight cutoff at 500 does not itself significantly separate compounds with poor oral bioavailability from those with acceptable values in this extensive data set. Our observations suggest that compounds which meet only the two criteria of (1) 10 or fewer rotatable bonds and (2) polar surface area equal to or less than 140 A(2) (or 12 or fewer H-bond donors and acceptors) will have a high probability of good oral bioavailability in the rat. Data sets for the artificial membrane permeation rate and for clearance in the rat were also examined. Reduced polar surface area correlates better with increased permeation rate than does lipophilicity (C log P), and increased rotatable bond count has a negative effect on the permeation rate. A threshold permeation rate is a prerequisite of oral bioavailability. The rotatable bond count does not correlate with the data examined here for the in vivo clearance rate in the rat.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Trends in Food Science & Technology
                Trends in Food Science & Technology
                Elsevier BV
                09242244
                October 2022
                October 2022
                : 128
                : 188-201
                Article
                10.1016/j.tifs.2022.08.006
                986009e0-426e-4347-b138-bb36d21563b5
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article