Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Simultaneous Estimation of Bias and Resolution in PET Images With a Long-Lived “Pocket” Phantom System

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A challenge in multicenter trials that use quantitative positron emission tomography (PET) imaging is the often unknown variability in PET image values, typically measured as standardized uptake values, introduced by intersite differences in global and resolution-dependent biases. We present a method for the simultaneous monitoring of scanner calibration and reconstructed image resolution on a per-scan basis using a PET/computed tomography (CT) “pocket” phantom. We use simulation and phantom studies to optimize the design and construction of the PET/CT pocket phantom (120 × 30 × 30 mm). We then evaluate the performance of the PET/CT pocket phantom and accompanying software used alongside an anthropomorphic phantom when known variations in global bias (±20%, ±40%) and resolution (3-, 6-, and 12-mm postreconstruction filters) are introduced. The resulting prototype PET/CT pocket phantom design uses 3 long-lived sources (15-mm diameter) containing germanium-68 and a CT contrast agent in an epoxy matrix. Activity concentrations varied from 30 to 190 kBq/mL. The pocket phantom software can accurately estimate global bias and can detect changes in resolution in measured phantom images. The pocket phantom is small enough to be scanned with patients and can potentially be used on a per-scan basis for quality assurance for clinical trials and quantitative PET imaging in general. Further studies are being performed to evaluate its performance under variations in clinical conditions that occur in practice.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          From RECIST to PERCIST: Evolving Considerations for PET response criteria in solid tumors.

          The purpose of this article is to review the status and limitations of anatomic tumor response metrics including the World Health Organization (WHO) criteria, the Response Evaluation Criteria in Solid Tumors (RECIST), and RECIST 1.1. This article also reviews qualitative and quantitative approaches to metabolic tumor response assessment with (18)F-FDG PET and proposes a draft framework for PET Response Criteria in Solid Tumors (PERCIST), version 1.0. PubMed searches, including searches for the terms RECIST, positron, WHO, FDG, cancer (including specific types), treatment response, region of interest, and derivative references, were performed. Abstracts and articles judged most relevant to the goals of this report were reviewed with emphasis on limitations and strengths of the anatomic and PET approaches to treatment response assessment. On the basis of these data and the authors' experience, draft criteria were formulated for PET tumor response to treatment. Approximately 3,000 potentially relevant references were screened. Anatomic imaging alone using standard WHO, RECIST, and RECIST 1.1 criteria is widely applied but still has limitations in response assessments. For example, despite effective treatment, changes in tumor size can be minimal in tumors such as lymphomas, sarcoma, hepatomas, mesothelioma, and gastrointestinal stromal tumor. CT tumor density, contrast enhancement, or MRI characteristics appear more informative than size but are not yet routinely applied. RECIST criteria may show progression of tumor more slowly than WHO criteria. RECIST 1.1 criteria (assessing a maximum of 5 tumor foci, vs. 10 in RECIST) result in a higher complete response rate than the original RECIST criteria, at least in lymph nodes. Variability appears greater in assessing progression than in assessing response. Qualitative and quantitative approaches to (18)F-FDG PET response assessment have been applied and require a consistent PET methodology to allow quantitative assessments. Statistically significant changes in tumor standardized uptake value (SUV) occur in careful test-retest studies of high-SUV tumors, with a change of 20% in SUV of a region 1 cm or larger in diameter; however, medically relevant beneficial changes are often associated with a 30% or greater decline. The more extensive the therapy, the greater the decline in SUV with most effective treatments. Important components of the proposed PERCIST criteria include assessing normal reference tissue values in a 3-cm-diameter region of interest in the liver, using a consistent PET protocol, using a fixed small region of interest about 1 cm(3) in volume (1.2-cm diameter) in the most active region of metabolically active tumors to minimize statistical variability, assessing tumor size, treating SUV lean measurements in the 1 (up to 5 optional) most metabolically active tumor focus as a continuous variable, requiring a 30% decline in SUV for "response," and deferring to RECIST 1.1 in cases that do not have (18)F-FDG avidity or are technically unsuitable. Criteria to define progression of tumor-absent new lesions are uncertain but are proposed. Anatomic imaging alone using standard WHO, RECIST, and RECIST 1.1 criteria have limitations, particularly in assessing the activity of newer cancer therapies that stabilize disease, whereas (18)F-FDG PET appears particularly valuable in such cases. The proposed PERCIST 1.0 criteria should serve as a starting point for use in clinical trials and in structured quantitative clinical reporting. Undoubtedly, subsequent revisions and enhancements will be required as validation studies are undertaken in varying diseases and treatments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Positron emission tomography-computed tomography standardized uptake values in clinical practice and assessing response to therapy.

            The use of standardized uptake values (SUVs) is now common place in clinical 2-deoxy-2-[(18)F] fluoro-D-glucose (FDG) position emission tomography-computed tomography oncology imaging and has a specific role in assessing patient response to cancer therapy. Ideally, the use of SUVs removes variability introduced by differences in patient size and the amount of injected FDG. However, in practice there are several sources of bias and variance that are introduced in the measurement of FDG uptake in tumors and also in the conversion of the image count data to SUVs. In this article the overall imaging process is reviewed and estimates of the magnitude of errors, where known, are given. Recommendations are provided for best practices in improving SUV accuracy. Copyright © 2010 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Netherlands protocol for standardisation and quantification of FDG whole body PET studies in multi-centre trials.

              Several studies have shown the usefulness of positron emission tomography (PET) quantification using standardised uptake values (SUV) for diagnosis and staging, prognosis and response monitoring. Many factors affect SUV, such as patient preparation procedures, scan acquisition, image reconstruction and data analysis settings, and the variability in methodology across centres prohibits exchange of SUV data. Therefore, standardisation of 2-[(18)F] fluoro-2-deoxy-D-glucose (FDG) PET whole body procedures is required in multi-centre trials. A protocol for standardisation of quantitative FDG whole body PET studies in the Netherlands (NL) was defined. This protocol is based on standardisation of: (1) patient preparation; (2) matching of scan statistics by prescribing dosage as function of patient weight, scan time per bed position, percentage of bed overlap and image acquisition mode (2D or 3D); (3) matching of image resolution by prescribing reconstruction settings for each type of scanner; (4) matching of data analysis procedure by defining volume of interest methods and SUV calculations and; (5) finally, a multi-centre QC procedure is defined using a 20-cm diameter phantom for verification of scanner calibration and the NEMA NU 2 2001 Image Quality phantom for verification of activity concentration recoveries (i.e., verification of image resolution and reconstruction convergence). This paper describes a protocol for standardization of quantitative FDG whole body multi-centre PET studies. The protocol was successfully implemented in the Netherlands and has been approved by the Netherlands Society of Nuclear Medicine.
                Bookmark

                Author and article information

                Journal
                101671170
                44558
                Tomography
                Tomography
                Tomography : a journal for imaging research
                2379-1381
                2379-139X
                20 June 2018
                March 2018
                06 July 2018
                : 4
                : 1
                : 33-41
                Affiliations
                [1 ]Imaging Research Laboratory, University of Washington, Seattle, WA
                [2 ]Kitware, Inc., Clifton Park, NY
                [3 ]The Phantom Laboratory, Salem, NY
                [4 ]RadQual, LLC, Weare, NH
                [5 ]Accumetra, LLC, Clifton Park, NY
                Author notes
                Corresponding Author: Paul Kinahan, PhD, Box 357987, University of Washington, Seattle, WA 98105; kinahan@ 123456uw.edu
                Article
                NIHMS954998
                10.18383/j.tom.2018.00004
                6024432
                29984312
                98e08bc9-2f46-4e0e-aaf8-9fb9b12a0f2b

                This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                Categories
                Article

                quantitative positron emission tomography imaging,calibration,standardized uptake value,clinical trials

                Comments

                Comment on this article