2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biofilm-Associated Multi-Drug Resistance in Hospital-Acquired Infections: A Review

      review-article
      1 , 1
      Infection and Drug Resistance
      Dove
      biofilm, multi-drug resistance, hospital-acquired infections

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Biofilm-related multi-drug resistance (MDR) is a major problem in hospital-acquired infections (HAIs) that increase patient morbidity and mortality rates and economic burdens such as high healthcare costs and prolonged hospital stay. This review focuses on the burden of bacterial biofilm in the hospital settings, their impact on the emergence of MDR in the HAIs, biofilm detection methods, recent approaches against biofilms, and future perspectives. The prevalence of biofilm-associated MDR among HAIs ranges from 17.9% to 100.0% worldwide. The predominant bacterial isolates causing HAIs in recently published studies were S. aureus, A. baumannii, K. pneumoniae, and P. aeruginosa. In addition to the use of qualitative and quantitative methods to detect biofilm formation, advanced PCR-based techniques have been performed for detecting biofilm-associated genes. Although there are suggested therapeutic strategies against biofilms, further confirmation of their efficacy for in vivo application and antibiotics targeting biofilm-associated genes/proteins to minimize treatment failure is required for the future.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: not found
          • Article: not found
          Is Open Access

          Bacterial biofilm and associated infections.

          Microscopic entities, microorganisms that drastically affect human health need to be thoroughly investigated. A biofilm is an architectural colony of microorganisms, within a matrix of extracellular polymeric substance that they produce. Biofilm contains microbial cells adherent to one-another and to a static surface (living or non-living). Bacterial biofilms are usually pathogenic in nature and can cause nosocomial infections. The National Institutes of Health (NIH) revealed that among all microbial and chronic infections, 65% and 80%, respectively, are associated with biofilm formation. The process of biofilm formation consists of many steps, starting with attachment to a living or non-living surface that will lead to formation of micro-colony, giving rise to three-dimensional structures and ending up, after maturation, with detachment. During formation of biofilm several species of bacteria communicate with one another, employing quorum sensing. In general, bacterial biofilms show resistance against human immune system, as well as against antibiotics. Health related concerns speak loud due to the biofilm potential to cause diseases, utilizing both device-related and non-device-related infections. In summary, the understanding of bacterial biofilm is important to manage and/or to eradicate biofilm-related diseases. The current review is, therefore, an effort to encompass the current concepts in biofilm formation and its implications in human health and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention

            In living organisms, biofilms are defined as complex communities of bacteria residing within an exopolysaccharide matrix that adheres to a surface. In the clinic, they are typically the cause of chronic, nosocomial, and medical device-related infections. Due to the antibiotic-resistant nature of biofilms, the use of antibiotics alone is ineffective for treating biofilm-related infections. In this review, we present a brief overview of concepts of bacterial biofilm formation, and current state-of-the-art therapeutic approaches for preventing and treating biofilms. Also, we have reviewed the prevalence of such infections on medical devices and discussed the future challenges that need to be overcome in order to successfully treat biofilms using the novel technologies being developed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Biofilm-related disease.

              Biofilm formation represents a protected mode of growth that renders bacterial cells less susceptible to antimicrobials and to killing by host immune effector mechanisms and so enables the pathogens to survive in hostile environments and also to disperse and colonize new niches. Biofilm disease includes device-related infections, chronic infections in the absence of a foreign body, and even malfunction of medical devices. Areas covered: This review puts forward a new medical entity that represents a major public health issue, which we have named 'biofilm-related disease'. We highlight the characteristics of biofilm disease including its pathogenesis, microbiological features, clinical presentation, and treatment challenges. Expert commentary: The diversity of biofilm-associated infections is increasing over time and its impact may be underestimated. This peculiar form of development endows associated bacteria with a high tolerance to conventional antimicrobial agents. A small percentage of persister cells developing within the biofilm is known to be highly tolerant to antibiotics and has typically been involved in causing relapse of infections. Knowledge of the pivotal role played by biofilm-growing microorganisms in related infections will provide new treatment dynamics for this biofilm-related disease.
                Bookmark

                Author and article information

                Journal
                Infect Drug Resist
                Infect Drug Resist
                idr
                Infection and Drug Resistance
                Dove
                1178-6973
                31 August 2022
                2022
                : 15
                : 5061-5068
                Affiliations
                [1 ]Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar , Gondar, Ethiopia
                Author notes
                Correspondence: Muluneh Assefa, Tel +251945572632, Email mulunehassefa2010@gmail.com
                Author information
                http://orcid.org/0000-0003-0241-8809
                Article
                379502
                10.2147/IDR.S379502
                9441148
                36068834
                990aa81d-1b8d-4905-acec-64842b37a527
                © 2022 Assefa and Amare.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 21 June 2022
                : 24 August 2022
                Page count
                Figures: 1, Tables: 2, References: 62, Pages: 8
                Funding
                Funded by: received no external funding;
                This review received no external funding.
                Categories
                Review

                Infectious disease & Microbiology
                biofilm,multi-drug resistance,hospital-acquired infections

                Comments

                Comment on this article