33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Association between LDL-C, Non HDL-C, and Apolipoprotein B Levels with Coronary Plaque Regression

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Previous reports have inferred a linear relationship between LDL-C and changes in coronary plaque volume (CPV) measured by intravascular ultrasound. However, these publications included a small number of studies and did not explore other lipid markers.

          Objective

          To assess the association between changes in lipid markers and regression of CPV using published data.

          Methods

          We collected data from the control, placebo and intervention arms in studies that compared the effect of lipidlowering treatments on CPV, and from the placebo and control arms in studies that tested drugs that did not affect lipids. Baseline and final measurements of plaque volume, expressed in mm 3, were extracted and the percentage changes after the interventions were calculated. Performing three linear regression analyses, we assessed the relationship between percentage and absolute changes in lipid markers and percentage variations in CPV.

          Results

          Twenty-seven studies were selected. Correlations between percentage changes in LDL-C, non-HDL-C, and apolipoprotein B (ApoB) and percentage changes in CPV were moderate (r = 0.48, r = 0.47, and r = 0.44, respectively). Correlations between absolute differences in LDL-C, non‑HDL-C, and ApoB with percentage differences in CPV were stronger (r = 0.57, r = 0.52, and r = 0.79). The linear regression model showed a statistically significant association between a reduction in lipid markers and regression of plaque volume.

          Conclusion

          A significant association between changes in different atherogenic particles and regression of CPV was observed. The absolute reduction in ApoB showed the strongest correlation with coronary plaque regression.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: the ASTEROID trial.

          Prior intravascular ultrasound (IVUS) trials have demonstrated slowing or halting of atherosclerosis progression with statin therapy but have not shown convincing evidence of regression using percent atheroma volume (PAV), the most rigorous IVUS measure of disease progression and regression. To assess whether very intensive statin therapy could regress coronary atherosclerosis as determined by IVUS imaging. Prospective, open-label blinded end-points trial (A Study to Evaluate the Effect of Rosuvastatin on Intravascular Ultrasound-Derived Coronary Atheroma Burden [ASTEROID]) was performed at 53 community and tertiary care centers in the United States, Canada, Europe, and Australia. A motorized IVUS pullback was used to assess coronary atheroma burden at baseline and after 24 months of treatment. Each pair of baseline and follow-up IVUS assessments was analyzed in a blinded fashion. Between November 2002 and October 2003, 507 patients had a baseline IVUS examination and received at least 1 dose of study drug. After 24 months, 349 patients had evaluable serial IVUS examinations. All patients received intensive statin therapy with rosuvastatin, 40 mg/d. Two primary efficacy parameters were prespecified: the change in PAV and the change in nominal atheroma volume in the 10-mm subsegment with the greatest disease severity at baseline. A secondary efficacy variable, change in normalized total atheroma volume for the entire artery, was also prespecified. The mean (SD) baseline low-density lipoprotein cholesterol (LDL-C) level of 130.4 (34.3) mg/dL declined to 60.8 (20.0) mg/dL, a mean reduction of 53.2% (P<.001). Mean (SD) high-density lipoprotein cholesterol (HDL-C) level at baseline was 43.1 (11.1) mg/dL, increasing to 49.0 (12.6) mg/dL, an increase of 14.7% (P<.001). The mean (SD) change in PAV for the entire vessel was -0.98% (3.15%), with a median of -0.79% (97.5% CI, -1.21% to -0.53%) (P<.001 vs baseline). The mean (SD) change in atheroma volume in the most diseased 10-mm subsegment was -6.1 (10.1) mm3, with a median of -5.6 mm3 (97.5% CI, -6.8 to -4.0 mm3) (P<.001 vs baseline). Change in total atheroma volume showed a 6.8% median reduction; with a mean (SD) reduction of -14.7 (25.7) mm3, with a median of -12.5 mm3 (95% CI, -15.1 to -10.5 mm3) (P<.001 vs baseline). Adverse events were infrequent and similar to other statin trials. Very high-intensity statin therapy using rosuvastatin 40 mg/d achieved an average LDL-C of 60.8 mg/dL and increased HDL-C by 14.7%, resulting in significant regression of atherosclerosis for all 3 prespecified IVUS measures of disease burden. Treatment to LDL-C levels below currently accepted guidelines, when accompanied by significant HDL-C increases, can regress atherosclerosis in coronary disease patients. Further studies are needed to determine the effect of the observed changes on clinical outcome. ClinicalTrials.gov Identifier: NCT00240318.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial.

            Statin drugs reduce both atherogenic lipoproteins and cardiovascular morbidity and mortality. However, the optimal strategy and target level for lipid reduction remain uncertain. To compare the effect of regimens designed to produce intensive lipid lowering or moderate lipid lowering on coronary artery atheroma burden and progression. Double-blind, randomized active control multicenter trial (Reversal of Atherosclerosis with Aggressive Lipid Lowering [REVERSAL]) performed at 34 community and tertiary care centers in the United States comparing the effects of 2 different statins administered for 18 months. Intravascular ultrasound was used to measure progression of atherosclerosis. Between June 1999 and September 2001, 654 patients were randomized and received study drug; 502 had evaluable intravascular ultrasound examinations at baseline and after 18 months of treatment. Patients were randomly assigned to receive a moderate lipid-lowering regimen consisting of 40 mg of pravastatin or an intensive lipid-lowering regimen consisting of 80 mg of atorvastatin. The primary efficacy parameter was the percentage change in atheroma volume (follow-up minus baseline). Baseline low-density lipoprotein cholesterol level (mean, 150.2 mg/dL [3.89 mmol/L] in both treatment groups) was reduced to 110 mg/dL (2.85 mmol/L) in the pravastatin group and to 79 mg/dL (2.05 mmol/L) in the atorvastatin group (P<.001). C-reactive protein decreased 5.2% with pravastatin and 36.4% with atorvastatin (P<.001). The primary end point (percentage change in atheroma volume) showed a significantly lower progression rate in the atorvastatin (intensive) group (P =.02). Similar differences between groups were observed for secondary efficacy parameters, including change in total atheroma volume (P =.02), change in percentage atheroma volume (P<.001), and change in atheroma volume in the most severely diseased 10-mm vessel subsegment (P<.01). For the primary end point, progression of coronary atherosclerosis occurred in the pravastatin group (2.7%; 95% confidence interval [CI], 0.2% to 4.7%; P =.001) compared with baseline. Progression did not occur in the atorvastatin group (-0.4%; CI -2.4% to 1.5%; P =.98) compared with baseline. For patients with coronary heart disease, intensive lipid-lowering treatment with atorvastatin reduced progression of coronary atherosclerosis compared with pravastatin. Compared with baseline values, patients treated with atorvastatin had no change in atheroma burden, whereas patients treated with pravastatin showed progression of coronary atherosclerosis. These differences may be related to the greater reduction in atherogenic lipoproteins and C- reactive protein in patients treated with atorvastatin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              2012 update of the Canadian Cardiovascular Society guidelines for the diagnosis and treatment of dyslipidemia for the prevention of cardiovascular disease in the adult.

              Many developments have occurred since the publication of the widely-used 2009 Canadian Cardiovascular Society (CCS) Dyslipidemia guidelines. Here, we present an updated version of the guidelines, incorporating new recommendations based on recent findings and harmonizing CCS guidelines with those from other Societies. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) system was used, per present standards of the CCS. The total cardiovascular disease Framingham Risk Score (FRS), modified for a family history of premature coronary disease, is recommended for risk assessment. Low-density lipoprotein cholesterol remains the primary target of therapy. However, non-high density lipoprotein cholesterol has been added to apolipoprotein B as an alternate target. There is an increased emphasis on treatment of higher risk patients, including those with chronic kidney disease and high risk hypertension. The primary panel has recommended a judicious use of secondary testing for subjects in whom the need for statin therapy is unclear. Expanded information on health behaviours is presented and is the backbone of risk reduction in all subjects. Finally, a systematic approach to statin intolerance is advocated to maximize appropriate use of lipid-lowering therapy. This document presents the recommendations and principal conclusions of this process. Along with associated Supplementary Material that can be accessed online, this document will be part of a program of knowledge translation. The goal is to increase the appropriate use of evidence-based cardiovascular disease event risk assessment in the management of dyslipidemia as a fundamental means of reducing global risk in the Canadian population. Copyright © 2013 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Arq Bras Cardiol
                Arq. Bras. Cardiol
                abc
                Arquivos Brasileiros de Cardiologia
                Sociedade Brasileira de Cardiologia
                0066-782X
                1678-4170
                July 2015
                July 2015
                : 105
                : 1
                : 11-19
                Affiliations
                [1 ]Consejo de Epidemiología y Prevención Cardiovascular de la Sociedad Argentina de Cardiología, Buenos Aires - Argentina
                [2 ]Hospital Italiano de Buenos Aires, Buenos Aires - Argentina
                Author notes
                Mailing Address: Walter Masson, Hospita Italiano de Buenos Aires. Gascon 450, Ciudad Autónoma de Buenos Aires. Postal Code 1416, Buenos Aires – Argentina. E-mail: walter.masson@ 123456hospitalitaliano.org.ar
                Article
                10.5935/abc.20150050
                4523283
                26016784
                990c8c10-0ad1-44bd-99cf-5932abd8f93a

                This is an Open Access article distributed under the terms of the Creative Commons Attribution NonCommercial License which permits unrestricted noncommercial use, distribution, and reproduction in any medium provided the original work is properly cited.

                History
                : 29 October 2014
                : 09 March 2015
                : 18 March 2015
                Categories
                Original Articles

                cardiovascular diseases,atherosclerosis/physiopathology,cholesterol, ldl,apolipoprotein b/therapeutic use,lipoproteins, ldl

                Comments

                Comment on this article