Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Parametric or Non-parametric: Skewness to Test Normality for Mean Comparison

      International Journal of Assessment Tools in Education
      International Journal of Assessment Tools in Education

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Checking the normality assumption is necessary to decide whether a parametric or non-parametric test needs to be used. Different ways are suggested in literature to use for checking normality. Skewness and kurtosis values are one of them. However, there is no consensus which values indicated a normal distribution. Therefore, the effects of different criteria in terms of skewness values were simulated in this study. Specifically, the results of t-test and U-test are compared under different skewness values. The results showed that t-test and U-test give different results when the data showed skewness. Based on the results, using skewness values alone to decide about normality of a dataset may not be enough. Therefore, the use of non-parametric tests might be inevitable.

          Abstract

          Checking the normality assumption is necessary to decide whether a parametric or non-parametric test needs to be used. Different ways are suggested in literature to use for checking normality. Skewness and kurtosis values are one of them. However, there is no consensus which values indicated a normal distribution. Therefore, the effects of different criteria in terms of skewness values were simulated in this study. Specifically, the results of t-test and U-test are compared under different skewness values. The results showed that t-test and U-test give different results when the data showed skewness. Based on the results, using skewness values alone to decide about normality of a dataset may not be enough. Therefore, the use of non-parametric tests might be inevitable.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Statistical notes for clinical researchers: assessing normal distribution (2) using skewness and kurtosis

          As discussed in the previous statistical notes, although many statistical methods have been proposed to test normality of data in various ways, there is no current gold standard method. The eyeball test may be useful for medium to large sized (e.g., n > 50) samples, however may not useful for small samples. The formal normality tests including Shapiro-Wilk test and Kolmogorov-Smirnov test may be used from small to medium sized samples (e.g., n 2.1 Kurtosis is a measure of the peakedness of a distribution. The original kurtosis value is sometimes called kurtosis (proper) and West et al. (1996) proposed a reference of substantial departure from normality as an absolute kurtosis (proper) value > 7.1 For some practical reasons, most statistical packages such as SPSS provide 'excess' kurtosis obtained by subtracting 3 from the kurtosis (proper). The excess kurtosis should be zero for a perfectly normal distribution. Distributions with positive excess kurtosis are called leptokurtic distribution meaning high peak, and distributions with negative excess kurtosis are called platykurtic distribution meaning flat-topped curve. 2) Normality test using skewness and kurtosis A z-test is applied for normality test using skewness and kurtosis. A z-score could be obtained by dividing the skew values or excess kurtosis by their standard errors. As the standard errors get smaller when the sample size increases, z-tests under null hypothesis of normal distribution tend to be easily rejected in large samples with distribution which may not substantially differ from normality, while in small samples null hypothesis of normality tends to be more easily accepted than necessary. Therefore, critical values for rejecting the null hypothesis need to be different according to the sample size as follows: For small samples (n < 50), if absolute z-scores for either skewness or kurtosis are larger than 1.96, which corresponds with a alpha level 0.05, then reject the null hypothesis and conclude the distribution of the sample is non-normal. For medium-sized samples (50 < n < 300), reject the null hypothesis at absolute z-value over 3.29, which corresponds with a alpha level 0.05, and conclude the distribution of the sample is non-normal. For sample sizes greater than 300, depend on the histograms and the absolute values of skewness and kurtosis without considering z-values. Either an absolute skew value larger than 2 or an absolute kurtosis (proper) larger than 7 may be used as reference values for determining substantial non-normality. Referring to Table 1 and Figure 1, we could conclude all the data seem to satisfy the assumption of normality despite that the histogram of the smallest-sized sample doesn't appear as a symmetrical bell shape and the formal normality tests for the largest-sized sample were rejected against the normality null hypothesis. 3) How strict is the assumption of normality? Though the humble t test (assuming equal variances) and analysis of variance (ANOVA) with balanced sample sizes are said to be 'robust' to moderate departure from normality, generally it is not preferable to rely on the feature and to omit data evaluation procedure. A combination of visual inspection, assessment using skewness and kurtosis, and formal normality tests can be used to assess whether assumption of normality is acceptable or not. When we consider the data show substantial departure from normality, we may either transform the data, e.g., transformation by taking logarithms, or select a nonparametric method such that normality assumption is not required.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Normality Tests for Statistical Analysis: A Guide for Non-Statisticians

            Statistical errors are common in scientific literature and about 50% of the published articles have at least one error. The assumption of normality needs to be checked for many statistical procedures, namely parametric tests, because their validity depends on it. The aim of this commentary is to overview checking for normality in statistical analysis using SPSS.
              Bookmark
              • Record: found
              • Abstract: found
              • Book: not found

              Practical Statistics for Medical Research

              Most medical researchers, whether clinical or non-clinical, receive some background in statistics as undergraduates. However, it is most often brief, a long time ago, and largely forgotten by the time it is needed. Furthermore, many introductory texts fall short of adequately explaining the underlying concepts of statistics, and often are divorced from the reality of conducting and assessing medical research.<br><br>Practical Statistics for Medical Research is a problem-based text for medical researchers, medical students, and others in the medical arena who need to use statistics but have no specialized mathematics background. <br><br>The author draws on twenty years of experience as a consulting medical statistician to provide clear explanations to key statistical concepts, with a firm emphasis on practical aspects of designing and analyzing medical research. The text gives special attention to the presentation and interpretation of results and the many real problems that arise in medical research.
                Bookmark

                Author and article information

                Contributors
                Journal
                International Journal of Assessment Tools in Education
                International Journal of Assessment Tools in Education
                2148-7456
                June 13 2020
                June 13 2020
                : 7
                : 2
                : 255-265
                Article
                10.21449/ijate.656077
                990f15e2-f56f-4639-b39e-69cd1c282201
                © 2020
                History

                Comments

                Comment on this article