21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Adiponectin Upregulates MiR-133a in Cardiac Hypertrophy through AMPK Activation and Reduced ERK1/2 Phosphorylation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Adiponectin and miR-133a are key regulators in cardiac hypertrophy. However, whether APN has a potential effect on miR-133a remains unclear. In this study, we aimed to investigate whether APN could regulate miR-133a expression in Angiotensin II (Ang II) induced cardiac hypertrophy in vivo and in vitro. Lentiviral-mediated adiponectin treatment attenuated cardiac hypertrophy induced by Ang II infusion in male wistar rats as determined by reduced cell surface area and mRNA levels of atrial natriuretic peptide (ANF) and brain natriuretic peptide (BNP), also the reduced left ventricular end-diastolic posterior wall thickness (LVPWd) and end-diastolic interventricular septal thickness (IVSd). Meanwhile, APN elevated miR-133a level which was downregulated by Ang II. To further investigate the underlying molecular mechanisms, we treated neonatal rat ventricular myocytes (NRVMs) with recombinant rat APN before Ang II stimulation. Pretreating cells with recombinant APN promoted AMP-activated protein kinase (AMPK) phosphorylation and inhibited ERK activation. By using the inhibitor of AMPK or a lentiviral vector expressing AMPK short hairpin RNA (shRNA) cancelled the positive effect of APN on miR-133a. The ERK inhibitor PD98059 reversed the downregulation of miR-133a induced by Ang II. These results indicated that the AMPK activation and ERK inhibition were responsible for the positive effect of APN on miR-133a. Furthermore, adiponectin receptor 1 (AdipoR1) mRNA expression was inhibited by Ang II stimulation. The positive effects of APN on AMPK activation and miR-133a, and the inhibitory effect on ERK phosphorylation were inhibited in NRVMs transfected with lentiviral AdipoR1shRNA. In addition, APN depressed the elevated expression of connective tissue growth factor (CTGF), a direct target of miR-133a, through the AMPK pathway. Taken together, our data indicated that APN reversed miR-133a levels through AMPK activation, reduced ERK1/2 phosphorylation in cardiomyocytes stimulated with Ang II, revealing a previously undemonstrated and important link between APN and miR-133a.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis.

          Gradients of signalling and transcription factors govern many aspects of embryogenesis, highlighting the need for spatiotemporal control of regulatory protein levels. MicroRNAs are phylogenetically conserved small RNAs that regulate the translation of target messenger RNAs, providing a mechanism for protein dose regulation. Here we show that microRNA-1-1 (miR-1-1) and miR-1-2 are specifically expressed in cardiac and skeletal muscle precursor cells. We found that the miR-1 genes are direct transcriptional targets of muscle differentiation regulators including serum response factor, MyoD and Mef2. Correspondingly, excess miR-1 in the developing heart leads to a decreased pool of proliferating ventricular cardiomyocytes. Using a new algorithm for microRNA target identification that incorporates features of RNA structure and target accessibility, we show that Hand2, a transcription factor that promotes ventricular cardiomyocyte expansion, is a target of miR-1. This work suggests that miR-1 genes titrate the effects of critical cardiac regulatory proteins to control the balance between differentiation and proliferation during cardiogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling.

            The myocardium of the failing heart undergoes a number of structural alterations, most notably hypertrophy of cardiac myocytes and an increase in extracellular matrix proteins, often seen as primary fibrosis. Connective tissue growth factor (CTGF) is a key molecule in the process of fibrosis and therefore seems an attractive therapeutic target. Regulation of CTGF expression at the promoter level has been studied extensively, but it is unknown how CTGF transcripts are regulated at the posttranscriptional level. Here we provide several lines of evidence to show that CTGF is importantly regulated by 2 major cardiac microRNAs (miRNAs), miR-133 and miR-30. First, the expression of both miRNAs was inversely related to the amount of CTGF in 2 rodent models of heart disease and in human pathological left ventricular hypertrophy. Second, in cultured cardiomyocytes and fibroblasts, knockdown of these miRNAs increased CTGF levels. Third, overexpression of miR-133 or miR-30c decreased CTGF levels, which was accompanied by decreased production of collagens. Fourth, we show that CTGF is a direct target of these miRNAs, because they directly interact with the 3' untranslated region of CTGF. Taken together, our results indicate that miR-133 and miR-30 importantly limit the production of CTGF. We also provide evidence that the decrease of these 2 miRNAs in pathological left ventricular hypertrophy allows CTGF levels to increase, which contributes to collagen synthesis. In conclusion, our results show that both miR-133 and miR-30 directly downregulate CTGF, a key profibrotic protein, and thereby establish an important role for these miRNAs in the control of structural changes in the extracellular matrix of the myocardium.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Potential therapeutic targets for cardiac fibrosis: TGFbeta, angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation.

              Fibrosis is one of the largest groups of diseases for which there is no therapy but is believed to occur because of a persistent tissue repair program. During connective tissue repair, "activated" fibroblasts migrate into the wound area, where they synthesize and remodel newly created extracellular matrix. The specialized type of fibroblast responsible for this action is the alpha-smooth muscle actin (alpha-SMA)-expressing myofibroblast. Abnormal persistence of the myofibroblast is a hallmark of fibrotic diseases. Proteins such as transforming growth factor (TGF)beta, endothelin-1, angiotensin II (Ang II), connective tissue growth factor (CCN2/CTGF), and platelet-derived growth factor (PDGF) appear to act in a network that contributes to myofibroblast differentiation and persistence. Drugs targeting these proteins are currently under consideration as antifibrotic treatments. This review summarizes recent observations concerning the contribution of TGFbeta, endothelin-1, Ang II, CCN2, and PDGF and to fibroblast activation in tissue repair and fibrosis and the potential utility of agents blocking these proteins in affecting the outcome of cardiac fibrosis.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                4 February 2016
                2016
                : 11
                : 2
                : e0148482
                Affiliations
                [1 ]Department of Cardiology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
                [2 ]Central Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
                [3 ]School of Medicine, Shandong University, Jinan, China
                University of Western Ontario, CANADA
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: Ying Li XC GS. Performed the experiments: Ying Li. Analyzed the data: YG LW. Contributed reagents/materials/analysis tools: SW Yueyan Li. Wrote the paper: Ying Li. Edited and revised manuscript: XC GS. Prepared figures: YF XG.

                Article
                PONE-D-15-39004
                10.1371/journal.pone.0148482
                4741527
                26845040
                9959846b-cfe2-427c-9fcf-b3cd217e5439
                © 2016 Li et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 3 September 2015
                : 19 January 2016
                Page count
                Figures: 7, Tables: 0, Pages: 16
                Funding
                This work was financially supported by the National Natural Science Foundation of China (No. 81170087), http://www.nsfc.gov.cn/. G Su received the funding.
                Categories
                Research Article
                Medicine and Health Sciences
                Cardiology
                Cardiac Hypertrophy
                Biology and Life Sciences
                Anatomy
                Cardiovascular Anatomy
                Heart
                Medicine and Health Sciences
                Anatomy
                Cardiovascular Anatomy
                Heart
                Biology and life sciences
                Genetics
                Gene expression
                Gene regulation
                MicroRNAs
                Biology and life sciences
                Biochemistry
                Nucleic acids
                RNA
                Non-coding RNA
                MicroRNAs
                Biology and Life Sciences
                Physiology
                Immune Physiology
                Cytokines
                Adipokines
                Adiponectin
                Medicine and Health Sciences
                Physiology
                Immune Physiology
                Cytokines
                Adipokines
                Adiponectin
                Biology and Life Sciences
                Immunology
                Immune System
                Innate Immune System
                Cytokines
                Adipokines
                Adiponectin
                Medicine and Health Sciences
                Immunology
                Immune System
                Innate Immune System
                Cytokines
                Adipokines
                Adiponectin
                Biology and Life Sciences
                Developmental Biology
                Molecular Development
                Cytokines
                Adipokines
                Adiponectin
                Biology and Life Sciences
                Biochemistry
                Hormones
                Peptide Hormones
                Adiponectin
                Biology and Life Sciences
                Biochemistry
                Proteins
                Post-Translational Modification
                Phosphorylation
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Artificial Gene Amplification and Extension
                Polymerase Chain Reaction
                Research and Analysis Methods
                Molecular Biology Techniques
                Artificial Gene Amplification and Extension
                Polymerase Chain Reaction
                Biology and Life Sciences
                Genetics
                Gene Expression
                Research and Analysis Methods
                Model Organisms
                Animal Models
                Rats
                Wistar Rats
                Biology and Life Sciences
                Organisms
                Animals
                Vertebrates
                Mammals
                Rodents
                Rats
                Wistar Rats
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article