6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Effects of Advanced Glycation End-products on the Proliferation and Fibronectin Production of Smooth Muscle Cells

      , ,
      Journal of Atherosclerosis and Thrombosis
      Japan Atherosclerosis Society

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Expression of transforming growth factor beta is elevated in human and experimental diabetic nephropathy.

          Diabetes is now the most common cause of progressive kidney failure leading to dialysis or transplantation. The central pathological feature of diabetic nephropathy is accumulation of extracellular matrix within the glomeruli. The factors in the diabetic milieu responsible for extracellular matrix accumulation are not understood. Here we report that in glomeruli of rats made diabetic there is a slow, progressive increase in the expression of transforming growth factor beta (TGF-beta) mRNA and TGF-beta protein. A key action of TGF-beta is induction of extracellular matrix production, and specific matrix proteins known to be induced by TGF-beta were increased in diabetic rat glomeruli. These proteins include an alternatively spliced form of fibronectin, tenascin, and the proteoglycan biglycan. TGF-beta has not previously been implicated in the matrix accumulation that occurs in the diabetic kidney. Glomeruli from humans with diabetic nephropathy also showed a striking increase in immunoreactive TGF-beta protein and deposition of the special form of fibronectin, whereas glomeruli from normal subjects or from individuals with other glomerular diseases (where extracellular matrix accumulation is not a feature) were negative or barely positive. These results implicate TGF-beta in the pathogenesis of diabetic nephropathy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Accumulation of Maillard reaction products in skin collagen in diabetes and aging.

            To investigate the contribution of glycation and oxidation reactions to the modification of insoluble collagen in aging and diabetes, Maillard reaction products were measured in skin collagen from 39 type 1 diabetic patients and 52 nondiabetic control subjects. Compounds studied included fructoselysine (FL), the initial glycation product, and the glycoxidation products, N epsilon-(carboxymethyl) lysine (CML) and pentosidine, formed during later Maillard reactions. Collagen-linked fluorescence was also studied. In nondiabetic subjects, glycation of collagen (FL content) increased only 33% between 20 and 85 yr of age. In contrast, CML, pentosidine and fluorescence increased five-fold, correlating strongly with age. In diabetic patients, collagen FL was increased threefold compared with nondiabetic subjects, correlating strongly with glycated hemoglobin but not with age. Collagen CML, pentosidine and fluorescence were increased up to twofold in diabetic compared with control patients: this could be explained by the increase in glycation alone, without invoking increased oxidative stress. There were strong correlations among CML, pentosidine and fluorescence in both groups, providing evidence for age-dependent chemical modification of collagen via the Maillard reaction, and acceleration of this process in diabetes. These results support the description of diabetes as a disease characterized by accelerated chemical aging of long-lived tissue proteins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nonenzymatic browning in vivo: possible process for aging of long-lived proteins.

              The incubation of lens proteins with reducing sugars leads to the formation of fluorescent yellow pigments and cross-like similar to those reported in aging and cataractous human lenses. Called nonenzymatic browning or the Maillard reaction, this aging process also occurs in stored foods. Reducing sugars condense with the free amino group of proteins, then rearrange and dehydrate to form unsaturated pigments and cross-linked products. Although most proteins in living systems turn over with sufficient rapidity to avoid nonenzymatic browning, some, such as lens crystallins and skin collagen, are exceptionally long-lived and may be vulnerable.
                Bookmark

                Author and article information

                Journal
                Journal of Atherosclerosis and Thrombosis
                J Atheroscler Thromb
                Japan Atherosclerosis Society
                1340-3478
                1880-3873
                2000
                2000
                : 7
                : 3
                : 169-176
                Article
                10.5551/jat1994.7.169
                99bae7b3-4b0b-4051-8538-6f245df1699e
                © 2000
                History

                Comments

                Comment on this article