18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A bioinspired optoelectronically engineered artificial neurorobotics device with sensorimotor functionalities

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Development of the next generation of bio- and nano-electronics is inseparably connected to the innovative concept of emulation and reproduction of biological sensorimotor systems and artificial neurobotics. Here, we report for the first time principally new artificial bioinspired optoelectronic sensorimotor system for the controlable immitation of opto-genetically engineered neurons in the biological motor system. The device is based on inorganic optical synapse (In-doped TiO 2 nanofilm) assembled into a liquid metal (galinstan) actuator. The optoelectronic synapse generates polarised excitatory and inhibitory postsynaptic potentials to trigger the liquid metal droplet to vibrate and then mimic the expansion and contraction of biological fibre muscle. The low-energy consumption and precise modulation of electrical and mechanical outputs are the distinguished characteristics of fabricated sensorimotor system. This work is the underlying significant step towards the development of next generation of low-energy the internet of things for bioinspired neurorobotic and bioelectronic system.

          Abstract

          The internet of things technologies relies on the development of sensorimotor systems. Here, Karbalaei Akbari and Zhuiykov show a bioinspired sensorimotor system based on an integration of an artificial optical synapse and a liquid metal actuator, which mimics the expansion and contraction of biological muscles.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          An ultra-lightweight design for imperceptible plastic electronics.

          Electronic devices have advanced from their heavy, bulky origins to become smart, mobile appliances. Nevertheless, they remain rigid, which precludes their intimate integration into everyday life. Flexible, textile and stretchable electronics are emerging research areas and may yield mainstream technologies. Rollable and unbreakable backplanes with amorphous silicon field-effect transistors on steel substrates only 3 μm thick have been demonstrated. On polymer substrates, bending radii of 0.1 mm have been achieved in flexible electronic devices. Concurrently, the need for compliant electronics that can not only be flexed but also conform to three-dimensional shapes has emerged. Approaches include the transfer of ultrathin polyimide layers encapsulating silicon CMOS circuits onto pre-stretched elastomers, the use of conductive elastomers integrated with organic field-effect transistors (OFETs) on polyimide islands, and fabrication of OFETs and gold interconnects on elastic substrates to realize pressure, temperature and optical sensors. Here we present a platform that makes electronics both virtually unbreakable and imperceptible. Fabricated directly on ultrathin (1 μm) polymer foils, our electronic circuits are light (3 g m(-2)) and ultraflexible and conform to their ambient, dynamic environment. Organic transistors with an ultra-dense oxide gate dielectric a few nanometres thick formed at room temperature enable sophisticated large-area electronic foils with unprecedented mechanical and environmental stability: they withstand repeated bending to radii of 5 μm and less, can be crumpled like paper, accommodate stretching up to 230% on prestrained elastomers, and can be operated at high temperatures and in aqueous environments. Because manufacturing costs of organic electronics are potentially low, imperceptible electronic foils may be as common in the future as plastic wrap is today. Applications include matrix-addressed tactile sensor foils for health care and monitoring, thin-film heaters, temperature and infrared sensors, displays, and organic solar cells.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Resistive switching in transition metal oxides

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Synaptic plasticity: multiple forms, functions, and mechanisms.

              Experiences, whether they be learning in a classroom, a stressful event, or ingestion of a psychoactive substance, impact the brain by modifying the activity and organization of specific neural circuitry. A major mechanism by which the neural activity generated by an experience modifies brain function is via modifications of synaptic transmission; that is, synaptic plasticity. Here, we review current understanding of the mechanisms of the major forms of synaptic plasticity at excitatory synapses in the mammalian brain. We also provide examples of the possible developmental and behavioral functions of synaptic plasticity and how maladaptive synaptic plasticity may contribute to neuropsychiatric disorders.
                Bookmark

                Author and article information

                Contributors
                Mohammad.akbari@ugent.be
                serge.zhuiykov@ugent.be
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                27 August 2019
                27 August 2019
                2019
                : 10
                : 3873
                Affiliations
                [1 ]Centre for Environmental & Energy Research, Ghent University, Global Campus, Incheon, South Korea
                [2 ]ISNI 0000 0001 2069 7798, GRID grid.5342.0, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, , Ghent University, ; 9000 Ghent, Belgium
                Author information
                http://orcid.org/0000-0001-9367-8475
                http://orcid.org/0000-0003-2709-1259
                Article
                11823
                10.1038/s41467-019-11823-4
                6712026
                31455784
                99d72e8c-3d5a-4cbe-9574-c2f165fd4d2a
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 8 May 2019
                : 31 July 2019
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                nanoscale materials,nanobiotechnology,bionanoelectronics
                Uncategorized
                nanoscale materials, nanobiotechnology, bionanoelectronics

                Comments

                Comment on this article