2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Functional characterization of uveal melanoma oncogenes

      research-article
      1 , 1 , 1 , * , 1 , *
      Oncogene

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Uveal melanoma (UM) is a currently untreatable form of melanoma with a 50% mortality rate. Characterization of the essential signaling pathways driving this cancer is critical to develop target therapies. Activating mutations in the Gαq signaling pathway at the level of GNAQ, GNA11 or rarely CYSLTR2 or PLCβ4 are considered alterations driving proliferation in UM and several other neoplastic disorders. Here, we systematically examined the oncogenic signaling output of various mutations recurrently identified in human tumors. We demonstrate that CYSLTR2->GNAQ/11->PLCβ act in a linear signaling cascade that, via protein kinase C (PKC), activates in parallel the MAP-kinase and FAK/YAP pathways. Using genetic ablation and pharmacological inhibition, we show that the PKC/RasGRP3/MAPK signaling branch is the essential component that drives the proliferation of UM. Only inhibition of the MAPK branch but not the FAK branch synergizes with inhibition of the proximal cascade, providing a blueprint for combination therapy. All oncogenic signaling could be extinguished by the novel GNAQ/11 inhibitor YM-254890, in all UM cells with driver mutation in the Gαq subunit or the upstream receptor. Our findings highlight the GNAQ/11->PLCβ->PKC->MAPK pathway as the central signaling axis to be suppressed pharmacologically to treat for neoplastic disorders with Gαq pathway mutations.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal.

          The cBioPortal for Cancer Genomics (http://cbioportal.org) provides a Web resource for exploring, visualizing, and analyzing multidimensional cancer genomics data. The portal reduces molecular profiling data from cancer tissues and cell lines into readily understandable genetic, epigenetic, gene expression, and proteomic events. The query interface combined with customized data storage enables researchers to interactively explore genetic alterations across samples, genes, and pathways and, when available in the underlying data, to link these to clinical outcomes. The portal provides graphical summaries of gene-level data from multiple platforms, network visualization and analysis, survival analysis, patient-centric queries, and software programmatic access. The intuitive Web interface of the portal makes complex cancer genomics profiles accessible to researchers and clinicians without requiring bioinformatics expertise, thus facilitating biological discoveries. Here, we provide a practical guide to the analysis and visualization features of the cBioPortal for Cancer Genomics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data.

            The cBio Cancer Genomics Portal (http://cbioportal.org) is an open-access resource for interactive exploration of multidimensional cancer genomics data sets, currently providing access to data from more than 5,000 tumor samples from 20 cancer studies. The cBio Cancer Genomics Portal significantly lowers the barriers between complex genomic data and cancer researchers who want rapid, intuitive, and high-quality access to molecular profiles and clinical attributes from large-scale cancer genomics projects and empowers researchers to translate these rich data sets into biologic insights and clinical applications. © 2012 AACR.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Improved vectors and genome-wide libraries for CRISPR screening.

                Bookmark

                Author and article information

                Journal
                8711562
                6325
                Oncogene
                Oncogene
                Oncogene
                0950-9232
                1476-5594
                14 November 2020
                01 December 2020
                January 2021
                01 June 2021
                : 40
                : 4
                : 806-820
                Affiliations
                [1 ]Departments of Dermatology and pathology, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143
                Author notes

                Author contributions

                B.C B. and X.C. supervised the study and wrote the manuscript. J. M. and X.C performed all experiments except YAP1 CRSPR/Cas9 knock out was performed by L.W.. All authors reviewed the manuscript.

                [* ]Correspondence: Boris.Bastian@ 123456ucsf.edu (B.B.), Xu.Chen@ 123456ucsf.edu (X.C.)
                Article
                NIHMS1645972
                10.1038/s41388-020-01569-5
                7856047
                33262460
                99ebfa7d-4aba-4283-8721-9146606ca6a8

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article