8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Synergistic Use of Sentinel-1 and Sentinel-2 to Map Natural Forest and Acacia Plantation and Stand Ages in North-Central Vietnam

      ,
      Remote Sensing
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many remote sensing studies do not distinguish between natural and planted forests. We combine C-Band Synthetic Aperture Radar (Sentinel-1, S-1) and optical satellite imagery (Sentinel-2, S-2) and examine Random Forest (RF) classification of acacia plantations and natural forest in North-Central Vietnam. We demonstrate an ability to distinguish plantation from natural forest, with overall classification accuracies of 87% for S-1, and 92.5% and 92.3% for S-2 and for S-1 and S-2 combined respectively. We found that the ratio of the Short-Wave Infrared Band to the Red Band proved most effective in distinguishing acacia from natural forest. We used RF on S-2 imagery to classify acacia plantations into 6 age classes with an overall accuracy of 70%, with young plantation consistently separated from older. However, accuracy was lower at distinguishing between the older age classes. For both distinguishing plantation and natural forest, and determining plantation age, a combination of radar and optical imagery did nothing to improve classification accuracy.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: not found
          • Article: not found

          ImageNet classification with deep convolutional neural networks

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-resolution global maps of 21st-century forest cover change.

            Quantification of global forest change has been lacking despite the recognized importance of forest ecosystem services. In this study, Earth observation satellite data were used to map global forest loss (2.3 million square kilometers) and gain (0.8 million square kilometers) from 2000 to 2012 at a spatial resolution of 30 meters. The tropics were the only climate domain to exhibit a trend, with forest loss increasing by 2101 square kilometers per year. Brazil's well-documented reduction in deforestation was offset by increasing forest loss in Indonesia, Malaysia, Paraguay, Bolivia, Zambia, Angola, and elsewhere. Intensive forestry practiced within subtropical forests resulted in the highest rates of forest change globally. Boreal forest loss due largely to fire and forestry was second to that in the tropics in absolute and proportional terms. These results depict a globally consistent and locally relevant record of forest change.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Scikit-learn: machine learning in python

                Bookmark

                Author and article information

                Journal
                Remote Sensing
                Remote Sensing
                MDPI AG
                2072-4292
                January 2021
                January 07 2021
                : 13
                : 2
                : 185
                Article
                10.3390/rs13020185
                99f935b4-06d4-4cef-9001-b92d55aee4f1
                © 2021

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article