2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Bayesian Noisy Logic Model for Inference of Transcription Factor Activity from Single Cell and Bulk Transcriptomic Data

      Preprint
      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The advent of high-throughput sequencing has made it possible to measure the expression of genes at relatively low cost. However, direct measurement of regulatory mechanisms, such as Transcription Factor (TF) activity is still not readily feasible in a high-throughput manner. Consequently, there is a need for computational approaches that can reliably estimate regulator activity from observable gene expression data. In this work, we present a noisy Boolean logic Bayesian model for TF activity inference from differential gene expression data and causal graphs. Our approach provides a flexible framework to incorporate biologically motivated TF-gene regulation logic models. Using simulations and controlled over-expression experiments in cell cultures, we demonstrate that our method can accurately identify TF activity. Moreover, we apply our method to bulk and single cell transcriptomics measurements to investigate transcriptional regulation of fibroblast phenotypic plasticity. Finally, to facilitate usage, we provide user-friendly software packages and a web-interface to query TF activity from user input differential gene expression data: https://umbibio.math.umb.edu/nlbayes/.

          Author Summary

          NextGen RNA sequencing (RNA-Seq) has enabled simultaneous measurement of the expression level of all genes. Measurements can be done at the population level or single-cell resolution. However, direct measurement of regulatory mechanisms, such as Transcription Factor (TF) activity, is still not possible in a high-throughput manner. As such, there is a need for computational models to infer regulator activity from gene expression data. In this work, we introduce a Bayesian methodology that utilizes prior biological knowledge on bio-molecular interactions in conjunction with readily available gene expression measurements to estimate TF activity. The Bayesian model naturally incorporates biologically motivated combinatorial TF-gene interaction logic models and accounts for noise in gene expression data as well as prior knowledge. The method is accompanied by efficiently implemented R and Python software packages as well as a user-friendly web-based interface that allows users to upload their gene expression data and run queries on a TF-gene interaction network to identify and rank putative transcriptional regulators. This tool can be used for a wide range of applications, such as identification of TFs downstream of signaling events and environmental or molecular perturbations, the aberration in TF activity in diseases, and other studies with ‘case-control’ gene expression data.

          Related collections

          Most cited references115

          • Record: found
          • Abstract: found
          • Article: not found

          Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles

          Although genomewide RNA expression analysis has become a routine tool in biomedical research, extracting biological insight from such information remains a major challenge. Here, we describe a powerful analytical method called Gene Set Enrichment Analysis (GSEA) for interpreting gene expression data. The method derives its power by focusing on gene sets, that is, groups of genes that share common biological function, chromosomal location, or regulation. We demonstrate how GSEA yields insights into several cancer-related data sets, including leukemia and lung cancer. Notably, where single-gene analysis finds little similarity between two independent studies of patient survival in lung cancer, GSEA reveals many biological pathways in common. The GSEA method is embodied in a freely available software package, together with an initial database of 1,325 biologically defined gene sets.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            edgeR: a Bioconductor package for differential expression analysis of digital gene expression data

            Summary: It is expected that emerging digital gene expression (DGE) technologies will overtake microarray technologies in the near future for many functional genomics applications. One of the fundamental data analysis tasks, especially for gene expression studies, involves determining whether there is evidence that counts for a transcript or exon are significantly different across experimental conditions. edgeR is a Bioconductor software package for examining differential expression of replicated count data. An overdispersed Poisson model is used to account for both biological and technical variability. Empirical Bayes methods are used to moderate the degree of overdispersion across transcripts, improving the reliability of inference. The methodology can be used even with the most minimal levels of replication, provided at least one phenotype or experimental condition is replicated. The software may have other applications beyond sequencing data, such as proteome peptide count data. Availability: The package is freely available under the LGPL licence from the Bioconductor web site (http://bioconductor.org). Contact: mrobinson@wehi.edu.au
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comprehensive Integration of Single-Cell Data

              Single-cell transcriptomics has transformed our ability to characterize cell states, but deep biological understanding requires more than a taxonomic listing of clusters. As new methods arise to measure distinct cellular modalities, a key analytical challenge is to integrate these datasets to better understand cellular identity and function. Here, we develop a strategy to "anchor" diverse datasets together, enabling us to integrate single-cell measurements not only across scRNA-seq technologies, but also across different modalities. After demonstrating improvement over existing methods for integrating scRNA-seq data, we anchor scRNA-seq experiments with scATAC-seq to explore chromatin differences in closely related interneuron subsets and project protein expression measurements onto a bone marrow atlas to characterize lymphocyte populations. Lastly, we harmonize in situ gene expression and scRNA-seq datasets, allowing transcriptome-wide imputation of spatial gene expression patterns. Our work presents a strategy for the assembly of harmonized references and transfer of information across datasets.
                Bookmark

                Author and article information

                Journal
                bioRxiv
                BIORXIV
                bioRxiv
                Cold Spring Harbor Laboratory
                05 May 2023
                : 2023.05.03.539308
                Affiliations
                [1 ]Department of Mathematics, University of Massachusetts Boston, Boston, MA 02125, USA.
                [2 ]Department of Physics, University of Massachusetts Boston, Boston, MA 02125, USA.
                [3 ]Center for Personalized Cancer Therapy, University of Massachusetts Boston, Boston, MA 02125, USA.
                Author notes
                Article
                10.1101/2023.05.03.539308
                10187261
                37205561
                9a00328a-cbb4-45a2-8f4d-172d89b4e7ba

                This work is licensed under a Creative Commons Attribution 4.0 International License, which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.

                History
                Categories
                Article

                Comments

                Comment on this article