32
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pharmacokinetic-pharmacodynamic analysis to evaluate the effect of moxifloxacin on QT interval prolongation in healthy Korean male subjects

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A single 400 mg dose of moxifloxacin has been the standard positive control for thorough QT (TQT) studies. However, it is not clearly known whether a 400 mg dose is also applicable to TQT studies in Asian subjects, including Koreans. Thus, we aimed to develop a pharmacokinetic (PK)-pharmacodynamic (PD) model for moxifloxacin, to evaluate the time course of its effect on QT intervals in Koreans. Data from three TQT studies of 33 healthy male Korean subjects who received 400 and 800 mg of moxifloxacin and placebo (water) were used. Twelve-lead electrocardiograms were taken for 2 consecutive days: 1 day to record diurnal changes and the next day to record moxifloxacin or placebo effects. Peripheral blood samples were also obtained for PK analysis. The PK-PD data obtained were analyzed using a nonlinear mixed-effects method (NONMEM ver. 7.2). A two-compartment linear model with first-order absorption provided the best description of moxifloxacin PK. Individualized QT interval correction, by heart rate, was performed by a power model, and the circadian variation of QT intervals was described by two mixed-effect cosine functions. The effect of moxifloxacin on QT interval prolongation was well explained by the nonlinear dose-response (E max) model, and the effect by 800 mg was only slightly greater than that of 400 mg. Although Koreans appeared to be more sensitive to moxifloxacin-induced QT prolongation than were Caucasians, the PK-PD model developed suggests that a 400 mg dose of moxifloxacin is also applicable to QT studies in Korean subjects.

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Population pharmacokinetic and concentration--QTc models for moxifloxacin: pooled analysis of 20 thorough QT studies.

          To increase our understanding of important subject characteristics and design variables affecting the performance of oral moxifloxacin in thorough QT studies, population pharmacokinetic and concentration-QTc models were developed by pooling data from 20 studies. A 1-compartment model with first-order elimination described the pharmacokinetics. Absorption delay was modeled using 8 transit compartments. Mean (95% confidence interval) values for oral clearance, apparent volume of distribution, the first-order absorption rate constant, and mean transit time were 11.7 (11.5-11.9) L/h, 147 (144-150) L, 1.9 (1.7-2.1) 1/h, and 0.3 (0.28-0.34) hours, respectively. Overencapsulating the moxifloxacin tablet increased mean transit time by 138% and delayed time to maximum concentration by 0.5 hours but had a minimal effect on overall exposure. Administration with food decreased absorption rate constant by 27%. Women had higher moxifloxacin exposure compared with men, which was explained by lower body weights. A linear model described the concentration-QTc relationship with a mean slope of 3.1 (2.8-3.3) milliseconds per µg/mL moxifloxacin. Mean slopes for individual studies ranged from 1.6 to 4.8 milliseconds per µg/mL. Hysteresis between moxifloxacin plasma concentrations and QTc was modest, and incorporating this delay did not result in a different slope (3.3 milliseconds per µg/mL). There were no differences in slope estimates between men and women or among race categories.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Drug-induced torsades de pointes and implications for drug development.

            Torsades de pointes is a potentially lethal arrhythmia that occasionally appears as an adverse effect of pharmacotherapy. Recently developed understanding of the underlying electrophysiology allows better estimation of the drug-induced risks and explains the failures of older approaches through the surface ECG. This article expresses a consensus reached by an independent academic task force on the physiologic understanding of drug-induced repolarization changes, their preclinical and clinical evaluation, and the risk-to-benefit interpretation of drug-induced torsades de pointes. The consensus of the task force includes suggestions on how to evaluate the risk of torsades within drug development programs. Individual sections of the text discuss the techniques and limitations of methods directed at drug-related ion channel phenomena, investigations aimed at action potentials changes, preclinical studies of phenomena seen only in the whole (or nearly whole) heart, and interpretation of human ECGs obtained in clinical studies. The final section of the text discusses drug-induced torsades within the larger evaluation of drug-related risks and benefits.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              QT-RR relationship in healthy subjects exhibits substantial intersubject variability and high intrasubject stability.

              Recently, it was demonstrated that the QT-RR relationship pattern varies significantly among healthy individuals. We compared the intra- and interindividual variations of the QT-RR relationship. Twenty-four-hour 12-lead digital electrocardiograms (ECGs; SEER MC, GE Marquette; 10-s ECG recorded every 30 s) were obtained at baseline and after 24 h, 1 wk, and 1 mo in 75 healthy subjects (42 women, 33 men, age 27.9 +/- 9.6 vs. 26.8 +/- 7.5 yr, P = not significant). QT interval was measured automatically in each ECG by six different algorithms, and the mean of the six measurements was analyzed. In each recording of each individual, QT-RR relationship was assessed by 10 different regression models including linear (QT = beta + alpha x RR) and parabolic (QT = beta x RR(alpha)) models. Standard deviations (SDs) of regression parameters alpha and beta of consecutive recordings of each individual were compared with SD of the individual means. Intrasubject stability and interindividual variability were further tested by ANOVA. With all models, intraindividual SDs of the regression parameters were highly significantly smaller than SD of individual means (P < 10(-5)-10(-9)). The intrasubject stability was further confirmed by ANOVA (P < 10(-19)-10(-30)). The QT-RR relationship exhibits substantial intersubject variability as well as a high intrasubject stability. This has practical implications for a precise estimation of the heart rate-corrected QT interval in which optimized subject-specific rate correction formulas should be used.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2015
                26 February 2015
                : 9
                : 1233-1245
                Affiliations
                [1 ]Department of Pharmacology, College of Medicine, the Catholic University of Korea, Seoul, Republic of Korea
                [2 ]PIPET (Pharmacometrics Institute for Practical Education and Training), the Catholic University of Korea, Seoul, Republic of Korea
                [3 ]Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Republic of Korea
                [4 ]Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Bundang Hospital, Seongnam, Republic of Korea
                Author notes
                Correspondence: Dong-Seok Yim, Department of Pharmacology, College of Medicine, the Catholic University of Korea, 222 Banpodaero, Seochogu, Seoul, Republic of Korea, Tel +82 2 2258 7327, Fax +82 2 2258 7876, Email yimds@ 123456catholic.ac.kr
                Article
                dddt-9-1233
                10.2147/DDDT.S79772
                4348051
                9a048763-a9ae-4690-bd8e-caa4a1f37aea
                © 2015 Hong et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Pharmacology & Pharmaceutical medicine
                thorough qt study,pk-pd model,nonmem,emax model
                Pharmacology & Pharmaceutical medicine
                thorough qt study, pk-pd model, nonmem, emax model

                Comments

                Comment on this article