8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reference quantitative transcriptome dataset for adult Caenorhabditis elegans

      other

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Caenorhabditis elegans is a nematode widely used in biology and genomics as a model organism. We provide an integrated, quantitative reference map for the transcriptome of whole, wild type Bristol N2 strain C. elegans worms. The map has been obtained by meta-analysis of 110 gene expression profiles available in Gene Expression Omnibus (GEO) repository and integrated using the computational biology tool Transcriptome Mapper (TRAM). Following probe assignment to the relative locus and intra- and inter-sample normalization (in particular using the scaled quantile method), a mean, consensus reference value is provided for 45,932 transcripts, along with standard deviation. Expression values are all mapped in the context of genomic coordinates. The map provides easy access to relationships among expression values of different genes in this standard condition, highlights genomic segments with relatively high over-/under-expression and may serve as a reference to test for gene expression variation for both individual genes and the whole transcriptome in specific biological conditions (e.g. mutated strains or differently grown worms).

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Genome sequence of the nematode C. elegans: a platform for investigating biology.

          (1999)
          The 97-megabase genomic sequence of the nematode Caenorhabditis elegans reveals over 19,000 genes. More than 40 percent of the predicted protein products find significant matches in other organisms. There is a variety of repeated sequences, both local and dispersed. The distinctive distribution of some repeats and highly conserved genes provides evidence for a regional organization of the chromosomes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0.

            Over the past decade, a growing community of researchers has emerged around the use of constraint-based reconstruction and analysis (COBRA) methods to simulate, analyze and predict a variety of metabolic phenotypes using genome-scale models. The COBRA Toolbox, a MATLAB package for implementing COBRA methods, was presented earlier. Here we present a substantial update of this in silico toolbox. Version 2.0 of the COBRA Toolbox expands the scope of computations by including in silico analysis methods developed since its original release. New functions include (i) network gap filling, (ii) (13)C analysis, (iii) metabolic engineering, (iv) omics-guided analysis and (v) visualization. As with the first version, the COBRA Toolbox reads and writes systems biology markup language-formatted models. In version 2.0, we improved performance, usability and the level of documentation. A suite of test scripts can now be used to learn the core functionality of the toolbox and validate results. This toolbox lowers the barrier of entry to use powerful COBRA methods.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              On the length, weight and GC content of the human genome

              Objective Basic parameters commonly used to describe genomes including length, weight and relative guanine-cytosine (GC) content are widely cited in absence of a primary source. By using updated data and original software we determined these values to the best of our knowledge as standard reference for the whole human nuclear genome, for each chromosome and for mitochondrial DNA. We also devised a method to calculate the relative GC content in the whole messenger RNA sequence set and in transcriptomes by multiplying the GC content of each gene by its mean expression level. Results The male nuclear diploid genome extends for 6.27 Gigabase pairs (Gbp), is 205.00 cm (cm) long and weighs 6.41 picograms (pg). Female values are 6.37 Gbp, 208.23 cm, 6.51 pg. The individual variability and the implication for the DNA informational density in terms of bits/volume were discussed. The genomic GC content is 40.9%. Following analysis in different transcriptomes and species, we showed that the greatest deviation was observed in the pathological condition analysed (trisomy 21 leukaemic cells) and in Caenorhabditis elegans. Our results may represent a solid basis for further investigation on human structural and functional genomics while also providing a framework for other genome comparative analysis. Electronic supplementary material The online version of this article (10.1186/s13104-019-4137-z) contains supplementary material, which is available to authorized users.
                Bookmark

                Author and article information

                Contributors
                Journal
                Data Brief
                Data Brief
                Data in Brief
                Elsevier
                2352-3409
                13 June 2019
                August 2019
                13 June 2019
                : 25
                : 104152
                Affiliations
                [1]Department of Experimental, Diagnostic and Specialty Medicine, (DIMES), Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126 Bologna, BO, Italy
                Author notes
                []Corresponding author. mariachiara.pelleri2@ 123456unibo.it
                Article
                S2352-3409(19)30506-2 104152
                10.1016/j.dib.2019.104152
                6700341
                9aaf7c06-c947-4725-ba3a-47dfcd3eccd0
                © 2019 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 19 February 2019
                : 5 June 2019
                : 6 June 2019
                Categories
                Genetics, Genomics and Molecular Biology

                c. elegans,transcriptome map,gene expression,adult worms,meta-analysis

                Comments

                Comment on this article