Planning and evaluating malaria control strategies relies on accurate definition of parasite prevalence in the population. A large proportion of asymptomatic parasite infections can only be identified by surveillance with molecular methods, yet these infections also contribute to onward transmission to mosquitoes. The sensitivity of molecular detection by PCR is limited by the abundance of the target sequence in a DNA sample; thus, detection becomes imperfect at low densities. We aimed to increase PCR diagnostic sensitivity by targeting multi-copy genomic sequences for reliable detection of low-density infections, and investigated the impact of these PCR assays on community prevalence data.
Two quantitative PCR (qPCR) assays were developed for ultra-sensitive detection of Plasmodium falciparum, targeting the high-copy telomere-associated repetitive element 2 (TARE-2, ∼250 copies/genome) and the var gene acidic terminal sequence ( varATS, 59 copies/genome). Our assays reached a limit of detection of 0.03 to 0.15 parasites/μl blood and were 10× more sensitive than standard 18S rRNA qPCR. In a population cross-sectional study in Tanzania, 295/498 samples tested positive using ultra-sensitive assays. Light microscopy missed 169 infections (57%). 18S rRNA qPCR failed to identify 48 infections (16%), of which 40% carried gametocytes detected by pfs25 quantitative reverse-transcription PCR. To judge the suitability of the TARE-2 and varATS assays for high-throughput screens, their performance was tested on sample pools. Both ultra-sensitive assays correctly detected all pools containing one low-density P. falciparum–positive sample, which went undetected by 18S rRNA qPCR, among nine negatives. TARE-2 and varATS qPCRs improve estimates of prevalence rates, yet other infections might still remain undetected when absent in the limited blood volume sampled.
Measured malaria prevalence in communities is largely determined by the sensitivity of the diagnostic tool used. Even when applying standard molecular diagnostics, prevalence in our study population was underestimated by 8% compared to the new assays. Our findings highlight the need for highly sensitive tools such as TARE-2 and varATS qPCR in community surveillance and for monitoring interventions to better describe malaria epidemiology and inform malaria elimination efforts.
Ingrid Felger and colleagues developed an assay that targets multi-copy genomic sequences and can detect low-density infections with falciparum malaria parasites.
Nearly half the world's population is at risk of malaria, and more than 600,000 people die from this mosquito-borne parasitic infection every year. Most of these deaths are caused by Plasmodium falciparum, which is transmitted to people by night-flying Anopheles mosquitoes. These insects inject “sporozoites” into people, a parasitic form that replicates inside human liver cells. After a few days, the liver cells release “merozoites,” which invade red blood cells, where they replicate rapidly before bursting out and infecting more red blood cells. This increase in parasitic burden causes malaria's characteristic fever, which needs to be treated promptly to prevent anemia and organ damage. Infected red blood cells also release “gametocytes,” which infect mosquitoes when they take a blood meal. In the mosquito, the gametocytes multiply and develop into sporozoites, thus completing the parasite's life cycle. Malaria can be prevented by controlling the mosquitoes that spread the parasite and by avoiding mosquito bites. Effective treatment with antimalarial drugs also helps to reduce malaria transmission and is a key component of global efforts to control and eliminate malaria.
Planning and evaluating malaria control and elimination efforts relies on having accurate and sensitive methods to measure parasite prevalence—the proportion of a population infected with parasites. It is particularly important to know how many people are carrying low-density infections because although these individuals have no symptoms, they contribute to malaria transmission. In the past, malaria was usually diagnosed by looking for parasites in blood using light microscopy, but molecular tests based on “quantitative polymerase chain reactions” (qPCRs) are now available that detect much lower parasite densities in blood (submicroscopic infections). qPCRs detect parasite-specific DNA sequences in patient blood samples, but reliable detection of low-density infections remains imperfect because the abundance of target sequences in patient samples limits the sensitivity of current qPCR methods. Here, the researchers investigate whether the sensitivity of P. falciparum detection using qPCR can be improved by targeting multi-copy genomic sequences—DNA sequences that are repeated many times in the parasite's genetic blueprint.
The researchers developed two new qPCRs for P. falciparum by using the telomere-associated repetitive element 2 (TARE-2; 250 copies/genome) and the var gene acidic terminal sequence ( varATS; 59 copies/genome) as target sequences. Direct comparison of these qPCRs with the standard 18S rRNA qPCR for P. falciparum, which targets a gene present at 5–8 copies/genome, indicated that the new assays were ten times more sensitive than the standard assay and could detect as few as 0.03–0.15 parasites/μl blood. Next, the researchers used light microscopy, 18S rRNA qPCR, and the two new qPCRs to look for P. falciparum parasites in 498 samples randomly selected from a malaria survey undertaken in Tanzania. Parasite prevalences were 25% by light microscopy, 50% by 18S rRNA qPCR, and 58% by TARE-2 or varATS qPCR. Compared to TARE-2 or varATS qPCR, 18S rRNA qPCR failed to identify 48 infections (16% of infections). Moreover, 40% of the positive samples missed by 18S rRNA qPCR contained gametocytes (detected by a different PCR-based assay) and therefore came from individuals capable of transmitting malaria parasites to mosquitoes. Finally, to test the suitability of the new ultra-sensitive assays for use in high-throughput screens, the researchers tested performance of the assays on sample pools. Both tests correctly identified all pools containing one low-density P. falciparum–positive sample among nine negative samples, whereas 18S rRNA qPCR identified none of these pools.
These findings provide evidence of low-density malaria infections in individuals previously thought to be parasite-free, even after testing with a molecular diagnostic. Notably, in the population considered in this study, the standard 18S rRNA qPCR underestimated parasite prevalence by nearly 10%. The assays developed in this study have some important limitations, however. First, they detect only P. falciparum, and malaria control programs ideally need assays that detect all the Plasmodium species that cause malaria. Second, because the TARE-2 and varATS qPCRs require advanced laboratory infrastructure, they cannot be used in remote field settings. Nevertheless, because low-density infections are likely to become increasingly common as countries improve malaria control, these findings highlight the need for ultra-sensitive tools such as the TARE-2 and varATS qPCRs for community surveillance and for monitoring the progress of malaria control and elimination programs.
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001788.
Information is available from the World Health Organization on malaria (in several languages), including information on malaria diagnosis; the World Malaria Report 2014 provides details of the current global malaria situation
The US Centers for Disease Control and Prevention also provides information on all aspects of malaria; its website provides a selection of personal stories about malaria
Information is available from the Roll Back Malaria Partnership on the global control of malaria and on the Global Malaria Action Plan (in English and French)
MedlinePlus provides links to additional information on malaria (in English and Spanish)