7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exosome-like vesicles derived from Hertwig's epithelial root sheath cells promote the regeneration of dentin-pulp tissue

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: The formation of dentin-pulp involves complex epithelial-mesenchymal interactions between Hertwig's epithelial root sheath cells (HERS) and dental papilla cells (DPCs). Earlier studies have identified some of the regulatory molecules participating in the crosstalk between HERS and DPCs and the formation of dentin-pulp. In the present study we focused on the role of HERS-secreted exosomes in DPCs and the formation of dentin-pulp. Specifically, we hypothesized that exosome-like vesicles (ELVs) might mediate the function of HERS and trigger lineage-specific differentiation of dental mesenchymal cells. To test our hypothesis, we evaluated the potential of ELVs derived from a HERS cell line (ELVs-H1) in inducing in vitro and in vivo differentiation of DPCs.

          Methods: ELVs-H1 were characterized using transmission electron microscopy and dynamic light scattering. The proliferation, migration, and odontoblast differentiation of DPCs after treatment with ELVs-H1, was detected by CCK8, transwell, ALP, and mineralization assays, respectively. Real time PCR and western blotting were used to detect gene and protein expression. For in vivo studies, DPC cells were mixed with collagen gel combined with or without ELVs and transplanted into the renal capsule of rats or subcutaneously into nude mice. HE staining and immunostaining were used to verify the regeneration of dentin-pulp and expression of odontoblast differentiation markers.

          Results: ELVs-H1 promoted the migration and proliferation of DPCs and also induced odontogenic differentiation and activation of Wnt/β-catenin signaling. ELVs-H1 also contributed to tube formation and neural differentiation in vitro. In addition, ELVs-H1 attached to the collagen gel, and were slowly released and endocytosed by DPCs, enhancing cell survival. ELVs-H1 together with DPCs triggered regeneration of dental pulp-dentin like tissue comprised of hard (reparative dentin-like tissue) and soft (blood vessels and neurons) tissue, in an in vivo tooth root slice model.

          Conclusion: Our data highlighted the potential of ELVs-H1 as biomimetic tools in providing a microenvironment for specific differentiation of dental mesenchymal stem cells. From a developmental perspective, these vesicles might be considered as novel mediators facilitating the epithelial-mesenchymal crosstalk. Their instructive potency might be exploited for the regeneration of dental pulp-dentin tissues.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          An updated overview on Wnt signaling pathways: a prelude for more.

          Growth factor signaling is required for cellular differentiation, tissue morphogenesis, and tissue homeostasis. Misregulation of intracellular signal transduction can lead to developmental defects during embryogenesis or particular diseases in the adult. One family of growth factors important for these aspects is given by the Wnt proteins. In particular, Wnts have important functions in stem cell biology, cardiac development and differentiation, angiogenesis, cardiac hypertrophy, cardiac failure, and aging. Knowledge of growth factor signaling during differentiation will allow for improvement of targeted differentiation of embryonic or adult stem cells toward functional cardiomyocytes or for understanding the basis of diseases. Our major aim here is to provide a state of the art review summarizing our present knowledge of the intracellular Wnt-mediated signaling network. In particular, we provide evidence that the subdivision into canonical and noncanonical Wnt signaling pathways solely based on the identity of Wnt ligands or Frizzled receptors is not appropriate anymore. We thereby deliver a solid base for further upcoming articles of a review series focusing on the role of Wnt proteins on different aspects of cardiovascular development and dysfunction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Enhanced Therapeutic Effects of Mesenchymal Stem Cell-Derived Exosomes with an Injectable Hydrogel for Hindlimb Ischemia Treatment

            Mesenchymal stem cell (MSC)-derived exosomes have been recognized as new candidates for cell-free treatment of various diseases. However, maintaining the retention and stability of exosomes over time in vivo after transplantation is a major challenge in the clinical application of MSC-derived exosomes. Here, we investigated if human placenta-derived MSC-derived exosomes incorporated with chitosan hydrogel could boost the retention and stability of exosomes and further enhance their therapeutic effects. Our results demonstrated that chitosan hydrogel notably increased the stability of proteins and microRNAs in exosomes, as well as augmented the retention of exosomes in vivo as confirmed by Gaussia luciferase imaging. In addition, we assessed endothelium-protective and proangiogenesis abilities of hydrogel-incorporated exosomes in vitro. Meanwhile, we evaluated the therapeutic function of hydrogel-incorporated exosomes in a murine model of hindlimb ischemia. Our data demonstrated that chitosan hydrogel could enhance the retention and stability of exosomes and further augment the therapeutic effects for hindlimb ischemia as revealed by firefly luciferase imaging of angiogenesis. The strategy used in this study may facilitate the development of easy and effective approaches for assessing and enhancing the therapeutic effects of stem cell-derived exosomes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exosomes as biomimetic tools for stem cell differentiation: Applications in dental pulp tissue regeneration

              Achieving and maintaining safe and reliable lineage specific differentiation of stem cells is important for clinical translation of tissue engineering strategies. In an effort to circumvent the multitude of problems arising from the usage of growth factors and growth factor delivery systems, we have explored the use of exosomes as biomimetic tools to induce stem cell differentiation. Working on the hypothesis that cell-type specific exosomes can trigger lineage-specific differentiation of stem cells, we have evaluated the potential of exosomes derived from dental pulp cells cultured on under growth and odontogenic differentiation conditions to induce odontogenic differentiation of naïve human dental pulp stem cells (DPSCs) and human bone marrow derived stromal cells (HMSCs) in vitro and in vivo. Results indicate that the exosomes can bind to matrix proteins such as type I collagen and fibronectin enabling them to be tethered to biomaterials. The exosomes are endocytosed by both DPSCs and HMSCs in a dose-dependent and saturable manner via the caveolar endocytic mechanism and trigger the P38 mitogen activated protein kinase (MAPK) pathway. In addition, the exosomes also trigger the increased expression of genes required for odontogenic differentiation. When tested in vivo in a tooth root slice model with DPSCs, the exosomes triggered regeneration of dental pulp-like tissue. However, our results indicate that exosomes isolated under odontogenic conditions are better inducers of stem cell differentiation and tissue regeneration. Overall, our results highlight the potential exosomes as biomimetic tools to induce lineage specific differentiation of stem cells. Our results also show the importance of considering the source and state of exosome donor cells before a choice is made for therapeutic applications.
                Bookmark

                Author and article information

                Journal
                Theranostics
                Theranostics
                thno
                Theranostics
                Ivyspring International Publisher (Sydney )
                1838-7640
                2020
                27 April 2020
                : 10
                : 13
                : 5914-5931
                Affiliations
                [1 ]State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Sichuan University, Chengdu, China;
                [2 ]National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China;
                [3 ]National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China;
                [4 ]Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China;
                [5 ]School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
                Author notes
                ✉ Corresponding authors: Dr. Guoqing Chen. School of Medicine, University of Electronic Science and Technology of China, Chengdu, China. Email: gqchen@ 123456uestc.edu.cn Tel/Fax: +86-028-85503499 Prof. Weidong Tian. Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China. Email: drtwd@ 123456sina.com . Tel/Fax: +86-028-85503499

                #: Sicheng Zhang and Yan Yang contributed equally to this work.

                Competing Interests: The authors have declared that no competing interest exists.

                Article
                thnov10p5914
                10.7150/thno.43156
                7254987
                32483427
                9b48c3e6-9dee-4476-9b16-994a208f49a1
                © The author(s)

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions.

                History
                : 17 December 2019
                : 3 April 2020
                Categories
                Research Paper

                Molecular medicine
                epithelial-mesenchymal interaction,hertwig's epithelial root sheath cell,exosome-like vesicle,odontogenic differentiation,pulp-dentin regeneration.

                Comments

                Comment on this article