0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of major hemorrhage in trauma patients in the prehospital setting: diagnostic accuracy and impact on outcome

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Hemorrhage is the most common cause of potentially preventable death after injury. Early identification of patients with major hemorrhage (MH) is important as treatments are time-critical. However, diagnosis can be difficult, even for expert clinicians. This study aimed to determine how accurate clinicians are at identifying patients with MH in the prehospital setting. A second aim was to analyze factors associated with missed and overdiagnosis of MH, and the impact on mortality.

          Methods

          Retrospective evaluation of consecutive adult (≥16 years) patients injured in 2019–2020, assessed by expert trauma clinicians in a mature prehospital trauma system, and admitted to a major trauma center (MTC). Clinicians decided to activate the major hemorrhage protocol (MHPA) or not. This decision was compared with whether patients had MH in hospital, defined as the critical admission threshold (CAT+): administration of ≥3 U of red blood cells during any 60-minute period within 24 hours of injury. Multivariate logistical regression analyses were used to analyze factors associated with diagnostic accuracy and mortality.

          Results

          Of the 947 patients included in this study, 138 (14.6%) had MH. MH was correctly diagnosed in 97 of 138 patients (sensitivity 70%) and correctly excluded in 764 of 809 patients (specificity 94%). Factors associated with missed diagnosis were penetrating mechanism (OR 2.4, 95% CI 1.2 to 4.7) and major abdominal injury (OR 4.0; 95% CI 1.7 to 8.7). Factors associated with overdiagnosis were hypotension (OR 0.99; 95% CI 0.98 to 0.99), polytrauma (OR 1.3, 95% CI 1.1 to 1.6), and diagnostic uncertainty (OR 3.7, 95% CI 1.8 to 7.3). When MH was missed in the prehospital setting, the risk of mortality increased threefold, despite being admitted to an MTC.

          Conclusion

          Clinical assessment has only a moderate ability to identify MH in the prehospital setting. A missed diagnosis of MH increased the odds of mortality threefold. Understanding the limitations of clinical assessment and developing solutions to aid identification of MH are warranted.

          Level of evidence

          Level III—Retrospective study with up to two negative criteria.

          Study type

          Original research; diagnostic accuracy study.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies

          Incomplete reporting has been identified as a major source of avoidable waste in biomedical research. Essential information is often not provided in study reports, impeding the identification, critical appraisal, and replication of studies. To improve the quality of reporting of diagnostic accuracy studies, the Standards for Reporting Diagnostic Accuracy (STARD) statement was developed. Here we present STARD 2015, an updated list of 30 essential items that should be included in every report of a diagnostic accuracy study. This update incorporates recent evidence about sources of bias and variability in diagnostic accuracy and is intended to facilitate the use of STARD. As such, STARD 2015 may help to improve completeness and transparency in reporting of diagnostic accuracy studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transfusion of plasma, platelets, and red blood cells in a 1:1:1 vs a 1:1:2 ratio and mortality in patients with severe trauma: the PROPPR randomized clinical trial.

            Severely injured patients experiencing hemorrhagic shock often require massive transfusion. Earlier transfusion with higher blood product ratios (plasma, platelets, and red blood cells), defined as damage control resuscitation, has been associated with improved outcomes; however, there have been no large multicenter clinical trials. To determine the effectiveness and safety of transfusing patients with severe trauma and major bleeding using plasma, platelets, and red blood cells in a 1:1:1 ratio compared with a 1:1:2 ratio. Pragmatic, phase 3, multisite, randomized clinical trial of 680 severely injured patients who arrived at 1 of 12 level I trauma centers in North America directly from the scene and were predicted to require massive transfusion between August 2012 and December 2013. Blood product ratios of 1:1:1 (338 patients) vs 1:1:2 (342 patients) during active resuscitation in addition to all local standard-of-care interventions (uncontrolled). Primary outcomes were 24-hour and 30-day all-cause mortality. Prespecified ancillary outcomes included time to hemostasis, blood product volumes transfused, complications, incidence of surgical procedures, and functional status. No significant differences were detected in mortality at 24 hours (12.7% in 1:1:1 group vs 17.0% in 1:1:2 group; difference, -4.2% [95% CI, -9.6% to 1.1%]; P = .12) or at 30 days (22.4% vs 26.1%, respectively; difference, -3.7% [95% CI, -10.2% to 2.7%]; P = .26). Exsanguination, which was the predominant cause of death within the first 24 hours, was significantly decreased in the 1:1:1 group (9.2% vs 14.6% in 1:1:2 group; difference, -5.4% [95% CI, -10.4% to -0.5%]; P = .03). More patients in the 1:1:1 group achieved hemostasis than in the 1:1:2 group (86% vs 78%, respectively; P = .006). Despite the 1:1:1 group receiving more plasma (median of 7 U vs 5 U, P < .001) and platelets (12 U vs 6 U, P < .001) and similar amounts of red blood cells (9 U) over the first 24 hours, no differences between the 2 groups were found for the 23 prespecified complications, including acute respiratory distress syndrome, multiple organ failure, venous thromboembolism, sepsis, and transfusion-related complications. Among patients with severe trauma and major bleeding, early administration of plasma, platelets, and red blood cells in a 1:1:1 ratio compared with a 1:1:2 ratio did not result in significant differences in mortality at 24 hours or at 30 days. However, more patients in the 1:1:1 group achieved hemostasis and fewer experienced death due to exsanguination by 24 hours. Even though there was an increased use of plasma and platelets transfused in the 1:1:1 group, no other safety differences were identified between the 2 groups. clinicaltrials.gov Identifier: NCT01545232.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The prospective, observational, multicenter, major trauma transfusion (PROMMTT) study: comparative effectiveness of a time-varying treatment with competing risks.

              To relate in-hospital mortality to early transfusion of plasma and/or platelets and to time-varying plasma:red blood cell (RBC) and platelet:RBC ratios. Prospective cohort study documenting the timing of transfusions during active resuscitation and patient outcomes. Data were analyzed using time-dependent proportional hazards models. Ten US level I trauma centers. Adult trauma patients surviving for 30 minutes after admission who received a transfusion of at least 1 unit of RBCs within 6 hours of admission (n = 1245, the original study group) and at least 3 total units (of RBCs, plasma, or platelets) within 24 hours (n = 905, the analysis group). In-hospital mortality. Plasma:RBC and platelet:RBC ratios were not constant during the first 24 hours (P < .001 for both). In a multivariable time-dependent Cox model, increased ratios of plasma:RBCs (adjusted hazard ratio = 0.31; 95% CI, 0.16-0.58) and platelets:RBCs (adjusted hazard ratio = 0.55; 95% CI, 0.31-0.98) were independently associated with decreased 6-hour mortality, when hemorrhagic death predominated. In the first 6 hours, patients with ratios less than 1:2 were 3 to 4 times more likely to die than patients with ratios of 1:1 or higher. After 24 hours, plasma and platelet ratios were unassociated with mortality, when competing risks from nonhemorrhagic causes prevailed. Higher plasma and platelet ratios early in resuscitation were associated with decreased mortality in patients who received transfusions of at least 3 units of blood products during the first 24 hours after admission. Among survivors at 24 hours, the subsequent risk of death by day 30 was not associated with plasma or platelet ratios.
                Bookmark

                Author and article information

                Journal
                Trauma Surg Acute Care Open
                Trauma Surg Acute Care Open
                tsaco
                tsaco
                Trauma Surgery & Acute Care Open
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                2397-5776
                2024
                12 January 2024
                : 9
                : 1
                : e001214
                Affiliations
                [1 ]departmentCentre for Trauma Sciences, Blizard Institute , Ringgold_4617Queen Mary University of London , London, UK
                [2 ]departmentTrauma Service, Royal London Hospital , Ringgold_9744Barts Health NHS Trust , London, UK
                [3 ]departmentSchool of Electronic Engineering and Computer Science , Ringgold_4617Queen Mary University of London , London, UK
                [4 ]London’s Air Ambulance , London, UK
                Author notes
                [Correspondence to ] Dr Jared M Wohlgemut; jwohlgemut@ 123456nhs.net
                Author information
                http://orcid.org/0000-0001-8276-0465
                http://orcid.org/0000-0002-2365-4643
                http://orcid.org/0000-0001-7784-6360
                http://orcid.org/0000-0003-0212-6363
                http://orcid.org/0000-0003-4807-8803
                Article
                tsaco-2023-001214
                10.1136/tsaco-2023-001214
                10806521
                38274019
                9ba0448d-2a23-44f3-96a5-b49d2c53e114
                © Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY. Published by BMJ.

                This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.

                History
                : 14 July 2023
                : 24 December 2023
                Funding
                Funded by: Royal College of Surgeons of Edinburgh and Orthopaedic Research UK;
                Funded by: Combat Casualty Care Research Program of the US Army Medical Research and Materiel Command;
                Award ID: DM180044
                Funded by: Royal College of Surgeons of England and Rosetrees Trust;
                Categories
                Original Research
                1506
                Custom metadata
                unlocked

                diagnostic accuracy,hemorrhage,multiple trauma,diagnosis

                Comments

                Comment on this article