46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Structural and Functional Studies of Nonstructural Protein 2 of the Hepatitis C Virus Reveal Its Key Role as Organizer of Virion Assembly

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Non-structural protein 2 (NS2) plays an important role in hepatitis C virus (HCV) assembly, but neither the exact contribution of this protein to the assembly process nor its complete structure are known. In this study we used a combination of genetic, biochemical and structural methods to decipher the role of NS2 in infectious virus particle formation. A large panel of NS2 mutations targeting the N-terminal membrane binding region was generated. They were selected based on a membrane topology model that we established by determining the NMR structures of N-terminal NS2 transmembrane segments. Mutants affected in virion assembly, but not RNA replication, were selected for pseudoreversion in cell culture. Rescue mutations restoring virus assembly to various degrees emerged in E2, p7, NS3 and NS2 itself arguing for an interaction between these proteins. To confirm this assumption we developed a fully functional JFH1 genome expressing an N-terminally tagged NS2 demonstrating efficient pull-down of NS2 with p7, E2 and NS3 and, to a lower extent, NS5A. Several of the mutations blocking virus assembly disrupted some of these interactions that were restored to various degrees by those pseudoreversions that also restored assembly. Immunofluorescence analyses revealed a time-dependent NS2 colocalization with E2 at sites close to lipid droplets (LDs) together with NS3 and NS5A. Importantly, NS2 of a mutant defective in assembly abrogates NS2 colocalization around LDs with E2 and NS3, which is restored by a pseudoreversion in p7, whereas NS5A is recruited to LDs in an NS2-independent manner. In conclusion, our results suggest that NS2 orchestrates HCV particle formation by participation in multiple protein-protein interactions required for their recruitment to assembly sites in close proximity of LDs.

          Author Summary

          Formation of infectious virus particles (assembly) is a complex process by which structural proteins and the viral genome must be transferred to the same subcellular sites to allow their direct or indirect interaction. In case of the hepatitis C virus (HCV), this process appears to take place in close proximity of lipid droplets (LDs) and requires in addition to the structural proteins core, envelope glycoprotein 1 (E1) and E2 two auxiliary factors, designated p7 and nonstructural protein 2 (NS2), contributing to virion formation by unknown mechanisms. In this study we used a combination of structural, genetic and biochemical assays to study the role of NS2 in HCV assembly. By using nuclear magnetic resonance spectroscopy of NS2 peptides we established a membrane topology model of the amino-terminal membrane binding domain of NS2. We found that this protein participates in multiple interactions with E2, p7, NS3 and NS5A that appear to recruit the viral proteins to sites in close proximity of LDs. In this respect, NS2 is a key organizer of the assembly of infectious HCV particles.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          The lipid droplet is an important organelle for hepatitis C virus production.

          The lipid droplet (LD) is an organelle that is used for the storage of neutral lipids. It dynamically moves through the cytoplasm, interacting with other organelles, including the endoplasmic reticulum (ER). These interactions are thought to facilitate the transport of lipids and proteins to other organelles. The hepatitis C virus (HCV) is a causative agent of chronic liver diseases. HCV capsid protein (Core) associates with the LD, envelope proteins E1 and E2 reside in the ER lumen, and the viral replicase is assumed to localize on ER-derived membranes. How and where HCV particles are assembled, however, is poorly understood. Here, we show that the LD is involved in the production of infectious virus particles. We demonstrate that Core recruits nonstructural (NS) proteins and replication complexes to LD-associated membranes, and that this recruitment is critical for producing infectious viruses. Furthermore, virus particles were observed in close proximity to LDs, indicating that some steps of virus assembly take place around LDs. This study reveals a novel function of LDs in the assembly of infectious HCV and provides a new perspective on how viruses usurp cellular functions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras.

            Chronic liver disease caused by infection with hepatitis C virus (HCV) is an important global health problem that currently affects 170 million people. A major impediment in HCV research and drug development has been the lack of culture systems supporting virus production. This obstacle was recently overcome by using JFH1-based full-length genomes that allow production of viruses infectious both in vitro and in vivo. Although this improvement was important, because of the restriction to the JFH1 isolate and a single chimera consisting of J6CF and JFH1-derived sequences, broadly based comparative studies between different HCV strains were not possible. Therefore, in this study we created a series of further chimeric genomes allowing production of infectious genotype (GT) 1a, 1b, 2a, and 3a particles. With the exception of the GT3a/JFH1 chimera, efficient virus production was obtained when the genome fragments were fused via a site located right after the first transmembrane domain of NS2. The most efficient construct is a GT2a/2a chimera consisting of J6CF- and JFH1-derived sequences connected via this junction. This hybrid, designated Jc1, yielded infectious titers 100- to 1,000-fold higher than the parental isolate and all other chimeras, suggesting that determinants within the structural proteins govern kinetic and efficiency of virus assembly and release. Finally, we describe an E1-specific antiserum capable of neutralizing infectivity of all HCV chimeras.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The preference of tryptophan for membrane interfaces.

              One of the ubiquitous features of membrane proteins is the preference of tryptophan and tyrosine residues for membrane surfaces that presumably arises from enhanced stability due to distinct interfacial interactions. The physical basis for this preference is widely believed to arise from amphipathic interactions related to imino group hydrogen bonding and/or dipole interactions. We have examined these and other possibilities for tryptophan's interfacial preference by using 1H magic angle spinning (MAS) chemical shift measurements, two-dimensional (2D) nuclear Overhauser effect spectroscopy (2D-NOESY) 1H MAS NMR, and solid state 2H NMR to study the interactions of four tryptophan analogues with phosphatidylcholine membranes. We find that the analogues reside in the vicinity of the glycerol group where they all cause similar modest changes in acyl chain organization and that hydrocarbon penetration was not increased by reduction of hydrogen bonding or electric dipole interaction ability. These observations rule out simple amphipathic or dipolar interactions as the physical basis for the interfacial preference. More likely, the preference is dominated by tryptophan's flat rigid shape that limits access to the hydrocarbon core and its pi electronic structure and associated quadrupolar moment (aromaticity) that favor residing in the electrostatically complex interface environment.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                December 2010
                December 2010
                16 December 2010
                : 6
                : 12
                : e1001233
                Affiliations
                [1 ]Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
                [2 ]Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS, Université de Lyon, Lyon, France
                [3 ]Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
                Washington University School of Medicine, United States of America
                Author notes

                Conceived and designed the experiments: VJ RM JYL JG DM FP RB. Performed the experiments: VJ RM JYL JG. Analyzed the data: VJ RM JYL JG DM FP RB. Wrote the paper: VJ FP RB.

                Article
                10-PLPA-RA-4183R2
                10.1371/journal.ppat.1001233
                3002993
                21187906
                9baa289f-376b-4f58-aed2-adb9bf1a7c3b
                Jirasko et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 14 September 2010
                : 16 November 2010
                Page count
                Pages: 22
                Categories
                Research Article
                Biochemistry/Macromolecular Assemblies and Machines
                Cell Biology/Membranes and Sorting
                Infectious Diseases
                Infectious Diseases/Viral Infections
                Virology/Virion Structure, Assembly, and Egress

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article