50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chronic Alcohol Exposure Alters Behavioral and Synaptic Plasticity of the Rodent Prefrontal Cortex

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the present study, we used a mouse model of chronic intermittent ethanol (CIE) exposure to examine how CIE alters the plasticity of the medial prefrontal cortex (mPFC). In acute slices obtained either immediately or 1-week after the last episode of alcohol exposure, voltage-clamp recording of excitatory post-synaptic currents (EPSCs) in mPFC layer V pyramidal neurons revealed that CIE exposure resulted in an increase in the NMDA/AMPA current ratio. This increase appeared to result from a selective increase in the NMDA component of the EPSC. Consistent with this, Western blot analysis of the postsynaptic density fraction showed that while there was no change in expression of the AMPA GluR1 subunit, NMDA NR1 and NRB subunits were significantly increased in CIE exposed mice when examined immediately after the last episode of alcohol exposure. Unexpectedly, this increase in NR1 and NR2B was no longer observed after 1-week of withdrawal in spite of a persistent increase in synaptic NMDA currents. Analysis of spines on the basal dendrites of layer V neurons revealed that while the total density of spines was not altered, there was a selective increase in the density of mushroom-type spines following CIE exposure. Examination of NMDA-receptor mediated spike-timing-dependent plasticity (STDP) showed that CIE exposure was associated with altered expression of long-term potentiation (LTP). Lastly, behavioral studies using an attentional set-shifting task that depends upon the mPFC for optimal performance revealed deficits in cognitive flexibility in CIE exposed mice when tested up to 1-week after the last episode of alcohol exposure. Taken together, these observations are consistent with those in human alcoholics showing protracted deficits in executive function, and suggest these deficits may be associated with alterations in synaptic plasticity in the mPFC.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Genetic enhancement of learning and memory in mice.

          Hebb's rule (1949) states that learning and memory are based on modifications of synaptic strength among neurons that are simultaneously active. This implies that enhanced synaptic coincidence detection would lead to better learning and memory. If the NMDA (N-methyl-D-aspartate) receptor, a synaptic coincidence detector, acts as a graded switch for memory formation, enhanced signal detection by NMDA receptors should enhance learning and memory. Here we show that overexpression of NMDA receptor 2B (NR2B) in the forebrains of transgenic mice leads to enhanced activation of NMDA receptors, facilitating synaptic potentiation in response to stimulation at 10-100 Hz. These mice exhibit superior ability in learning and memory in various behavioural tasks, showing that NR2B is critical in gating the age-dependent threshold for plasticity and memory formation. NMDA-receptor-dependent modifications of synaptic efficacy, therefore, represent a unifying mechanism for associative learning and memory. Our results suggest that genetic enhancement of mental and cognitive attributes such as intelligence and memory in mammals is feasible.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Medial frontal cortex mediates perceptual attentional set shifting in the rat.

            If rodents do not display the behavioral complexity that is subserved in primates by prefrontal cortex, then evolution of prefrontal cortex in the rat should be doubted. Primate prefrontal cortex has been shown to mediate shifts in attention between perceptual dimensions of complex stimuli. This study examined the possibility that medial frontal cortex of the rat is involved in the shifting of perceptual attentional set. We trained rats to perform an attentional set-shifting task that is formally the same as a task used in monkeys and humans. Rats were trained to dig in bowls for a food reward. The bowls were presented in pairs, only one of which was baited. The rat had to select the bowl in which to dig by its odor, the medium that filled the bowl, or the texture that covered its surface. In a single session, rats performed a series of discriminations, including reversals, an intradimensional shift, and an extradimensional shift. Bilateral lesions by injection of ibotenic acid in medial frontal cortex resulted in impairment in neither initial acquisition nor reversal learning. We report here the same selective impairment in shifting of attentional set in the rat as seen in primates with lesions of prefrontal cortex. We conclude that medial frontal cortex of the rat has functional similarity to primate lateral prefrontal cortex.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structural plasticity associated with exposure to drugs of abuse.

              Persistent changes in behavior and psychological function that occur as a function of experience, such those associated with learning and memory, are thought to be due to the reorganization of synaptic connections (structural plasticity) in relevant brain circuits. Some of the most compelling examples of experience-dependent changes in behavior and psychological function, changes that can last a lifetime, are those that accrue with the development of addictions. However, until recently, there has been almost no research on whether potentially addictive drugs produce forms of structural plasticity similar to those associated with other forms of experience-dependent plasticity. In this paper we summarize evidence that, indeed, exposure to amphetamine, cocaine, nicotine or morphine produces persistent changes in the structure of dendrites and dendritic spines on cells in brain regions involved in incentive motivation and reward (such as the nucleus accumbens), and judgment and the inhibitory control of behavior (such as the prefrontal cortex). It is suggested that structural plasticity associated with exposure to drugs of abuse reflects a reorganization of patterns of synaptic connectivity in these neural systems, a reorganization that alters their operation, thus contributing to some of the persistent sequela associated with drug use--including addiction.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                30 May 2012
                : 7
                : 5
                : e37541
                Affiliations
                [1 ]School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas, United States of America
                [2 ]Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
                [3 ]Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, South Carolina, United States of America
                Institut National de la Santé et de la Recherche Médicale, France
                Author notes

                Conceived and designed the experiments: SK PM NN HB LJC. Performed the experiments: SK PM NN. Analyzed the data: SK PM NN JG. Contributed reagents/materials/analysis tools: SK PM HB LJC. Wrote the paper: SK PM LJC.

                Article
                PONE-D-11-25338
                10.1371/journal.pone.0037541
                3364267
                22666364
                9c356061-40cb-41b7-8f23-d9d4efc02ae4
                Kroener et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 17 December 2011
                : 23 April 2012
                Page count
                Pages: 12
                Categories
                Research Article
                Biology
                Neuroscience
                Cellular Neuroscience
                Neuronal Morphology
                Neurophysiology
                Central Nervous System
                Homeostatic Mechanisms
                Synapses
                Animal Cognition
                Behavioral Neuroscience
                Neurotransmitters
                Medicine
                Drugs and Devices
                Behavioral Pharmacology
                Drug Dependence
                Psychopharmacology
                Public Health
                Alcohol

                Uncategorized
                Uncategorized

                Comments

                Comment on this article