Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Highly Sensitive and Selective Detection of Arsenic Using Electrogenerated Nanotextured Gold Assemblage

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Arsenic is considered as a toxic heavy metal which is highly detrimental to ecological systems, and long-term exposure to it is highly dangerous to life as it can cause serious health effects. Timely detection of traces of active arsenic (As 3+) is very crucial, and the development of simple, cost-effective methods is imperative to address the presence of arsenic in water and food chain. Herein, we present an extensive study on chemical-free electrogenerated nanotextured gold assemblage for the detection of ultralow levels of As 3+ in water up to 0.08 ppb concentration. The gold nanotextured electrode (Au/GNE) is developed on simple Au foil via electrochemical oxidation–reduction sweeps in a metal-ion-free electrolyte solution. The ultrafine nanoscale morphological attributes of Au/GNE substrate are studied by scanning electron microscopy. Square wave anodic stripping voltammetry (ASV) response for different concentrations of arsenites is determined and directly correlated with As 3+ detection regarding the type of electrolyte solution, deposition potential, and deposition time. The average of three standard curves are linear from 0.1 ppb up to 9 ppb ( n = 15) with a linear regression coefficient R 2 = 0.9932. Under optimized conditions, a superior sensitivity of 39.54 μA ppb –1 cm –2 is observed with a lower detection limit of 0.1 ppb (1.3 nM) (based on the visual analysis of calibration curve) and 0.08 ppb (1.06 nM) (based on the standard deviation of linear regression). Furthermore, the electrochemical Au/GNE is also applicable for arsenic detection in a complex system containing Cu 2+, Ni 2+, Fe 2+, Pb 2+, Hg 2+, and other ions for the selective and sensitive analysis. Au/GNE substrate also possesses remarkable reproducibility and high stability for arsenic detection during repeated analysis and thus can be employed for prolonged applications and reiterating analyses. This electrochemically generated nanotextured electrode is also applicable for As 3+ detection and analysis in a real water sample under optimized conditions. Therefore, fabrication conditions and analytical and electroanalytical performances justify that because of its low cost, easy preparation method and assembly, high reproducibility, and robustness, nanosensor Au/GNE can be scaled up for further applications.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: not found
          • Article: not found

          Real surface area measurements in electrochemistry

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cancer risks from arsenic in drinking water.

            Ingestion of arsenic, both from water supplies and medicinal preparations, is known to cause skin cancer. The evidence assessed here indicates that arsenic can also cause liver, lung, kidney, and bladder cancer and that the population cancer risks due to arsenic in U.S. water supplies may be comparable to those from environmental tobacco smoke and radon in homes. Large population studies in an area of Taiwan with high arsenic levels in well water (170-800 micrograms/L) were used to establish dose-response relationships between cancer risks and the concentration of inorganic arsenic naturally present in water supplies. It was estimated that at the current EPA standard of 50 micrograms/L, the lifetime risk of dying from cancer of the liver, lung, kidney, or bladder from drinking 1 L/day of water could be as high as 13 per 1000 persons. It has been estimated that more than 350,000 people in the United States may be supplied with water containing more than 50 micrograms/L arsenic, and more than 2.5 million people may be supplied with water with levels above 25 micrograms/L. For average arsenic levels and water consumption patterns in the United States, the risk estimate was around 1/1000. Although further research is needed to validate these findings, measures to reduce arsenic levels in water supplies should be considered.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Gold nanoelectrode ensembles for the simultaneous electrochemical detection of ultratrace arsenic, mercury, and copper.

              Simultaneous electrochemical detection of As(III), Hg(II), and Cu(II) using a highly sensitive platform based on gold nanoelectrode ensembles (GNEEs) is described. GNEEs were grown by colloidal chemical approach on thiol-functionalized solgel derived three-dimensional silicate network preassembled on a polycrystalline gold (Au) electrode. GNEEs on the silicate network have been characterized by field emission scanning electron microscopy, X-ray diffraction, diffuse reflectance spectroscopy, and electrochemical measurements. Square wave anodic stripping voltammetry (SWASV) has been used for the detection of As(III) and Hg(II) without any interference from Cu(II) at the potentials of 0.06 and 0.53 V, respectively. The GNEE electrode is highly sensitive, and it shows linear response for As(III) and Hg(II) up to 15 ppb. The detection limit (signal-to-noise ratio = 4) of the GNEE electrode toward As(III) and Hg(II) is 0.02 ppb, which is well below the guideline value given by the World Health Organization (WHO). The potential application of the GNEE electrode for the detection of As(III) in a real sample collected from the arsenic-contaminated water in 24 North Parganas, West Bengal is demonstrated. The GNEE electrode has been successfully used for the simultaneous detection of As(III), Cu(II), and Hg(II) at sub-part-per-billion level without any interference for the first time. The nanostructured electrode shows individual voltammetric peaks for As(III), Cu(II), and Hg(II) at 0.06, 0.35, and 0.53 V, respectively. The analytical performance of the GNEE electrode is superior to the existing electrodes.
                Bookmark

                Author and article information

                Journal
                ACS Omega
                ACS Omega
                ao
                acsodf
                ACS Omega
                American Chemical Society
                2470-1343
                14 August 2019
                27 August 2019
                : 4
                : 9
                : 13645-13657
                Affiliations
                []Department of Chemistry, University of Engineering and Technology (UET) , G.T Road, Lahore 54890, Pakistan
                []Institute of Chemical Sciences, Bahauddin Zakariya University (BZU) , Bosan Road, Multan 60000, Punjab, Pakistan
                [§ ]Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST) , H-12, Islamabad 46000, Pakistan
                Author notes
                Article
                10.1021/acsomega.9b00807
                6714603
                9c94ee00-28d1-483f-b3c0-f4252690ef95
                Copyright © 2019 American Chemical Society

                This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.

                History
                : 23 March 2019
                : 17 July 2019
                Categories
                Article
                Custom metadata
                ao9b00807
                ao-2019-008073

                Comments

                Comment on this article