2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Emerging contaminants detected in aquaculture sites in Java, Indonesia

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references115

          • Record: found
          • Abstract: found
          • Article: not found

          Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review.

          Urban wastewater treatment plants (UWTPs) are among the main sources of antibiotics' release into various compartments of the environment worldwide. The aim of the present paper is to critically review the fate and removal of various antibiotics in wastewater treatment, focusing on different processes (i.e. biological processes, advanced treatment technologies and disinfection) in view of the current concerns related to the induction of toxic effects in aquatic and terrestrial organisms, and the occurrence of antibiotics that may promote the selection of antibiotic resistance genes and bacteria, as reported in the literature. Where available, estimations of the removal of antibiotics are provided along with the main treatment steps. The removal efficiency during wastewater treatment processes varies and is mainly dependent on a combination of antibiotics' physicochemical properties and the operating conditions of the treatment systems. As a result, the application of alternative techniques including membrane processes, activated carbon adsorption, advanced oxidation processes (AOPs), and combinations of them, which may lead to higher removals, may be necessary before the final disposal of the effluents or their reuse for irrigation or groundwater recharge. Copyright © 2012 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Emerging organic contaminants in groundwater: A review of sources, fate and occurrence.

            Emerging organic contaminants (EOCs) detected in groundwater may have adverse effects on human health and aquatic ecosystems. This paper reviews the existing occurrence data in groundwater for a range of EOCs including pharmaceutical, personal care, 'life-style' and selected industrial compounds. The main sources and pathways for organic EOCs in groundwater are reviewed, with occurrence data for EOCs in groundwater included from both targeted studies and broad reconnaissance surveys. Nanogram-microgram per litre concentrations are present in groundwater for a large range of EOCs as well as metabolites and transformation products and under certain conditions may pose a threat to freshwater bodies for decades due to relatively long groundwater residence times. In the coming decades, more of these EOCs are likely to have drinking water standards, environmental quality standards and/or groundwater threshold values defined, and therefore a better understanding of the spatial and temporal variation remains a priority. Copyright © 2012 Natural Environment Research Council. Published by Elsevier Ltd.. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Ecotoxicology of human pharmaceuticals

              Low levels of human medicines (pharmaceuticals) have been detected in many countries in sewage treatment plant (STP) effluents, surface waters, seawaters, groundwater and some drinking waters. For some pharmaceuticals effects on aquatic organisms have been investigated in acute toxicity assays. The chronic toxicity and potential subtle effects are only marginally known, however. Here, we critically review the current knowledge about human pharmaceuticals in the environment and address several key questions. What kind of pharmaceuticals and what concentrations occur in the aquatic environment? What is the fate in surface water and in STP? What are the modes of action of these compounds in humans and are there similar targets in lower animals? What acute and chronic ecotoxicological effects may be elicited by pharmaceuticals and by mixtures? What are the effect concentrations and how do they relate to environmental levels? Our review shows that only very little is known about long-term effects of pharmaceuticals to aquatic organisms, in particular with respect to biological targets. For most human medicines analyzed, acute effects to aquatic organisms are unlikely, except for spills. For investigated pharmaceuticals chronic lowest observed effect concentrations (LOEC) in standard laboratory organisms are about two orders of magnitude higher than maximal concentrations in STP effluents. For diclofenac, the LOEC for fish toxicity was in the range of wastewater concentrations, whereas the LOEC of propranolol and fluoxetine for zooplankton and benthic organisms were near to maximal measured STP effluent concentrations. In surface water, concentrations are lower and so are the environmental risks. However, targeted ecotoxicological studies are lacking almost entirely and such investigations are needed focusing on subtle environmental effects. This will allow better and comprehensive risk assessments of pharmaceuticals in the future.
                Bookmark

                Author and article information

                Journal
                Science of The Total Environment
                Science of The Total Environment
                Elsevier BV
                00489697
                June 2021
                June 2021
                : 773
                : 145057
                Article
                10.1016/j.scitotenv.2021.145057
                33592457
                9ced6ca2-147d-4a67-8991-92b7bd44b60c
                © 2021

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article