7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      HSP70-based anti-cancer immunotherapy

      article-commentary

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Heat shock protein 70, (Hsp70) constitutes a powerful system of cytoprotection in all organisms studied to date. Exerting such activity, Hsp70 rescues cancer cells from antitumor therapy, posing a great challenge for oncologists. In contrast to its protective action, Hsp70 was found to be released from cancer cells, prompting cytotoxic lymphocytes to target and kill the tumor. A great number of vaccines have been developed on the basis of the ability of Hsp70 to present tumor antigen or to elevate the sensitivity of cancer cells to cytotoxic lymphocytes. In this commentary, we consider novel data on the employment of pure Hsp70 in the therapy of glioma and melanoma malignancies. We show that intratumorally delivered Hsp70 penetrates cancer cells and pulls its intracellular analog outside of the cell. This displacement may activate cells, constituting both innate and adaptive immunity. In vivo delivery of Hsp70 was found to inhibit tumor growth and to extend survival. The technology of intratumoral injection of pure Hsp70 passed through preclinical trials and was investigated in clinics for children with brain cancer; the results show the safety and feasibility of a new approach.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          The reprogramming of tumor stroma by HSF1 is a potent enabler of malignancy.

          Stromal cells within the tumor microenvironment are essential for tumor progression and metastasis. Surprisingly little is known about the factors that drive the transcriptional reprogramming of stromal cells within tumors. We report that the transcriptional regulator heat shock factor 1 (HSF1) is frequently activated in cancer-associated fibroblasts (CAFs), where it is a potent enabler of malignancy. HSF1 drives a transcriptional program in CAFs that complements, yet is completely different from, the program it drives in adjacent cancer cells. This CAF program is uniquely structured to support malignancy in a non-cell-autonomous way. Two central stromal signaling molecules-TGF-β and SDF1-play a critical role. In early-stage breast and lung cancer, high stromal HSF1 activation is strongly associated with poor patient outcome. Thus, tumors co-opt the ancient survival functions of HSF1 to orchestrate malignancy in both cell-autonomous and non-cell-autonomous ways, with far-reaching therapeutic implications. Copyright © 2014 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Membrane-bound HSP70-engineered myeloma cell-derived exosomes stimulate more efficient CD8+ CTL- and NK-mediated antitumour immunity than exosomes released from heat-shocked tumour cells expressing cytoplasmic HSP70

            Abstract Exosomes (EXO) derived from tumour cells have been used to stimulate antitumour immune responses, but only resulting in prophylatic immunity. Tumour-derived heat shock protein 70 (HSP70) molecules are molecular chaperones with a broad repertoire of tumour antigen peptides capable of stimulating dendritic cell (DC) maturation and T-cell immune responses. To enhance EXO-based antitumour immunity, we generated an engineered myeloma cell line J558HSP expressing endogenous P1A tumour antigen and transgenic form of membrane-bound HSP70 and heat-shocked J558HS expressing cytoplasmic HSP70, and purified EXOHSP and EXOHS from J558HSP and J558HS tumour cell culture supernatants by ultracentrifugation. We found that EXOHSP were able to more efficiently stimulate maturation of DCs with up-regulation of Iab, CD40, CD80 and inflammatory cytokines than EXOHS after overnight incubation of immature bone-marrow-derived DCs (5 × 106 cells) with EXO (100 μg), respectively. We also i.v. immunized BALB/c mice with EXO (30 μg/mouse) and assessed P1A-specific T-cell responses after immunization. We demonstrate that EXOHSP are able to stimulate type 1 CD4+ helper T (Th1) cell responses, and more efficient P1A-specific CD8+ cytotoxic T lymphocyte (CTL) responses and antitumour immunity than EXOHS. In addition, we further elucidate that EXOHSP-stimulated antitumour immunity is mediated by both P1A-specific CD8+ CTL and non-P1A-specific natural killer (NK) responses. Therefore, membrane-bound HSP70-expressing tumour cell-released EXO may represent a more effective EXO-based vaccine in induction of antitumour immunity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Heat Shock Protein–Peptide Complexes, Reconstituted In Vitro, Elicit Peptide-specific Cytotoxic T Lymphocyte Response and Tumor Immunity

              Heat shock protein (HSP) preparations derived from cancer cells and virus-infected cells have been shown previously to elicit cancer-specific or virus-specific immunity. The immunogenicity of HSP preparations has been attributed to peptides associated with the HSPs. The studies reported here demonstrate that immunogenic HSP–peptide complexes can also be reconstituted in vitro. The studies show that (a) complexes of hsp70 or gp96 HSP molecules with a variety of synthetic peptides can be generated in vitro; (b) the binding of HSPs with peptides is specific in that a number of other proteins tested do not bind synthetic peptides under the conditions in which gp96 molecules do; (c) HSP–peptide complexes reconstituted in vitro are immunologically active, as tested by their ability to elicit antitumor immunity and specific CD8+ cytolytic T lymphocyte response; and (d) synthetic peptides reconstituted in vitro with gp96 are capable of being taken up and re-presented by macrophage in the same manner as gp96– peptides complexes generated in vivo. These observations demonstrate that HSPs are CD8+ T cell response–eliciting adjuvants.
                Bookmark

                Author and article information

                Journal
                Hum Vaccin Immunother
                Hum Vaccin Immunother
                KHVI
                khvi20
                Human Vaccines & Immunotherapeutics
                Taylor & Francis
                2164-5515
                2164-554X
                October 2016
                13 June 2016
                13 June 2016
                : 12
                : 10
                : 2529-2535
                Affiliations
                Institute of Cytology of Russian Academy of Sciences , St. Petersburg, Russia
                Author notes
                CONTACT Irina V. Guzhova irina.guzh@ 123456gmail.com Laboratory of Cell Protection Mechanisms, Institute of Cytology of Russian Academy of Sciences , Tikhoretsky ave., 4, St. Petersburg 197064, Russia

                Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/khvi.

                Article
                1190057
                10.1080/21645515.2016.1190057
                5084976
                27294301
                9d8112f2-ea5d-4d3c-87f5-afb6c8335104
                © 2016 The Author(s). Published with license by Taylor & Francis.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted.

                History
                : 21 April 2016
                : 11 May 2016
                Page count
                Figures: 2, Tables: 1, References: 44, Pages: 7
                Categories
                Commentaries

                Molecular medicine
                cd4+ t-lymphocytes,cd8+ t-lymphocytes,glioma,heat shock proteins,hsp70,immunotherapy,melanoma,nk cells,vaccine

                Comments

                Comment on this article