7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Highly Reversible Zn Metal Anodes Enabled by Freestanding, Lightweight, and Zincophilic MXene/Nanoporous Oxide Heterostructure Engineered Separator for Flexible Zn-MnO 2 Batteries

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aqueous zinc (Zn)-ion batteries are regarded as promising candidates for large-scale energy storage systems because of their high safety, low cost, and environmental benignity. However, the dendrite issue of Zn anode hinders their practical application. Herein, a freestanding, lightweight, and zincophilic MXene/nanoporous oxide heterostructure engineered separator is designed to stabilize a Zn metal anode. The nanoporous oxides prepared by a one-step vacuum distillation technique afford the advantages of large surface area, high porosity, and homogeneous porous structure. The zincophilic MXene@oxides layer can homogenize the electric field distribution, facilitate ion diffusion kinetics, reduce local current density, and promote even Zn ionic flux, which will regulate uniform Zn deposition and suppress side reactions. Accordingly, dendrite-free Zn anodes with stable cyclability are achieved for over 500 h at an ultrahigh area capacity of 10 mAh cm-2. Besides, flexible, long-lifespan, and high-rate N/S-doped three-dimensional MXene@MnO2||Zn full cells are constructed with the engineered separator. Moreover, this strategy can be successfully extended to lithium, sodium, potassium, and magnesium metal batteries, indicating that separator regulation is a universal approach to overcome the challenges of metal batteries.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Reversible epitaxial electrodeposition of metals in battery anodes.

          The propensity of metals to form irregular and nonplanar electrodeposits at liquid-solid interfaces has emerged as a fundamental barrier to high-energy, rechargeable batteries that use metal anodes. We report an epitaxial mechanism to regulate nucleation, growth, and reversibility of metal anodes. The crystallographic, surface texturing, and electrochemical criteria for reversible epitaxial electrodeposition of metals are defined and their effectiveness demonstrated by using zinc (Zn), a safe, low-cost, and energy-dense battery anode material. Graphene, with a low lattice mismatch for Zn, is shown to be effective in driving deposition of Zn with a locked crystallographic orientation relation. The resultant epitaxial Zn anodes achieve exceptional reversibility over thousands of cycles at moderate and high rates. Reversible electrochemical epitaxy of metals provides a general pathway toward energy-dense batteries with high reversibility.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The world of two-dimensional carbides and nitrides (MXenes)

            A decade after the first report, the family of two-dimensional (2D) carbides and nitrides (MXenes) includes structures with three, five, seven, or nine layers of atoms in an ordered or solid solution form. Dozens of MXene compositions have been produced, resulting in MXenes with mixed surface terminations. MXenes have shown useful and tunable electronic, optical, mechanical, and electrochemical properties, leading to applications ranging from optoelectronics, electromagnetic interference shielding, and wireless antennas to energy storage, catalysis, sensing, and medicine. Here we present a forward-looking review of the field of MXenes. We discuss the challenges to be addressed and outline research directions that will deepen the fundamental understanding of the properties of MXenes and enable their hybridization with other 2D materials in various emerging technologies.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Dendrite‐Free Zinc Deposition Induced by Multifunctional CNT Frameworks for Stable Flexible Zn‐Ion Batteries

                Bookmark

                Author and article information

                Contributors
                Journal
                ACS Nano
                ACS Nano
                American Chemical Society (ACS)
                1936-0851
                1936-086X
                April 26 2022
                March 31 2022
                April 26 2022
                : 16
                : 4
                : 6755-6770
                Affiliations
                [1 ]Key Laboratory for Liquid−Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan 250061, PR China
                [2 ]School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
                [3 ]Hefei National Laboratory for Physical Science at Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China
                Article
                10.1021/acsnano.2c01571
                35357131
                9dbf06f6-9a7d-40ee-b94b-2ff6bf6bef6a
                © 2022

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-045

                History

                Comments

                Comment on this article