Blog
About

4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Fully automated registration of first-pass myocardial perfusion MRI using independent component analysis.

      Information processing in medical imaging : proceedings of the ... conference

      Algorithms, Artificial Intelligence, Coronary Artery Disease, complications, diagnosis, Humans, Image Enhancement, methods, Image Interpretation, Computer-Assisted, Magnetic Resonance Imaging, Principal Component Analysis, Reproducibility of Results, Sensitivity and Specificity, Ventricular Dysfunction, Left, etiology

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This paper presents a novel method for registration of cardiac perfusion MRI. The presented method successfully corrects for breathing motion without any manual interaction using Independent Component Analysis to extract physiologically relevant features together with their time-intensity behavior. A time-varying reference image mimicking intensity changes in the data of interest is computed based on the results of ICA, and used to compute the displacement caused by breathing for each frame. Qualitative and quantitative validation of the method is carried out using 46 clinical quality, short-axis, perfusion MR datasets comprising 100 images each. Validation experiments showed a reduction of the average LV motion from 1.26+/-0.87 to 0.64+/-0.46 pixels. Time-intensity curves are also improved after registration with an average error reduced from 2.65+/-7.89% to 0.87+/-3.88% between registered data and manual gold standard. We conclude that this fully automatic ICA-based method shows an excellent accuracy, robustness and computation speed, adequate for use in a clinical environment.

          Related collections

          Author and article information

          Journal
          17633728

          Comments

          Comment on this article