23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Perspective-dependent reactivity of sensorimotor mu rhythm in alpha and beta ranges during action observation: an EEG study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During action observation, several visual features of observed actions can modulate the level of sensorimotor reactivity in the onlooker. Among possibly relevant parameters, one of the less investigated in humans is the visual perspective from which actions are observed. In the present EEG study, we assessed the reactivity of alpha and beta mu rhythm subcomponents to four different visual perspectives, defined by the position of the observer relative to the moving agent (identifying first-person, third-person and lateral viewpoints) and by the anatomical compatibility of observed effectors with self- or other individual’s body (identifying ego- and allo-centric viewpoints, respectively). Overall, the strongest sensorimotor responsiveness emerged for first-person perspective. Furthermore, we found different patterns of perspective-dependent reactivity in rolandic alpha and beta ranges, with the former tuned to visuospatial details of observed actions and the latter tuned to action-related parameters (such as the direction of actions relative to the observer), suggesting a higher recruitment of beta motor rhythm in face-to-face interactions. The impact of these findings on the selection of most effective action stimuli for “Action Observation Treatment” neurorehabilitative protocols is discussed.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations.

          The parieto-frontal cortical circuit that is active during action observation is the circuit with mirror properties that has been most extensively studied. Yet, there remains controversy on its role in social cognition and its contribution to understanding the actions and intentions of other individuals. Recent studies in monkeys and humans have shed light on what the parieto-frontal cortical circuit encodes and its possible functional relevance for cognition. We conclude that, although there are several mechanisms through which one can understand the behaviour of other individuals, the parieto-frontal mechanism is the only one that allows an individual to understand the action of others 'from the inside' and gives the observer a first-person grasp of the motor goals and intentions of other individuals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Seeing or doing? Influence of visual and motor familiarity in action observation.

            The human brain contains specialized circuits for observing and understanding actions. Previous studies have not distinguished whether this "mirror system" uses specialized motor representations or general processes of visual inference and knowledge to understand observed actions. We report the first neuroimaging study to distinguish between these alternatives. Purely motoric influences on perception have been shown behaviorally, but their neural bases are unknown. We used fMRI to reveal the neural bases of motor influences on action observation. We controlled for visual and knowledge effects by studying expert dancers. Some ballet moves are performed by only one gender. However, male and female dancers train together and have equal visual familiarity with all moves. Male and female dancers viewed videos of gender-specific male and female ballet moves. We found greater premotor, parietal, and cerebellar activity when dancers viewed moves from their own motor repertoire, compared to opposite-gender moves that they frequently saw but did not perform. Our results show that mirror circuits have a purely motor response over and above visual representations of action. We understand actions not only by visual recognition, but also motorically. In addition, we confirm that the cerebellum is part of the action observation network.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Event-related dynamics of cortical rhythms: frequency-specific features and functional correlates.

              Oscillations in the alpha and beta band (<35 Hz) display a dynamic behavior and show characteristic spatiotemporal patterns in sensory, motor and cognitive tasks. The event-related desynchronization (ERD) of alpha band and beta rhythms can be seen as a correlate of an activated cortical area with an increased excitability level of neurons. An event-related synchronization (ERS) of frequency components between 10 and 13 Hz may represent a deactivated cortical area or inhibited cortical network, at least under certain circumstances. It is hypothesized, that antagonistic ERD/ERS patterns, called 'focal ERD/surround ERS', may reflect a thalamo-cortical mechanism to enhance focal cortical activation by simultaneous inhibition of other cortical areas. Induced oscillations in the beta band (13-35 Hz, beta ERS) were found in sensorimotor areas after voluntary movement and after somatosensory stimulation. This may be interpreted as a state of 'inhibition' of neural circuitry in the primary motor cortex. Simultaneous activation of the motor cortex by e.g. motor imagery lead to an attenuation of the beta ERS. Moreover, there is evidence that the frequency of the induced beta oscillations represent a 'resonance-like frequency' of underlying cortical networks. However, further research is needed to investigate the functional meaning of bursts of beta oscillations below 35 Hz.
                Bookmark

                Author and article information

                Contributors
                monica.angelini@unibs.it
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                20 August 2018
                20 August 2018
                2018
                : 8
                : 12429
                Affiliations
                [1 ]Consiglio Nazionale delle Ricerche (CNR), Istituto di Neuroscienze, Sede di Parma, Italy
                [2 ]ISNI 0000000417571846, GRID grid.7637.5, Dipartimento di Ingegneria dell’Informazione, , Università degli Studi di Brescia, ; Brescia, Italy
                [3 ]ISNI 0000000417571846, GRID grid.7637.5, Dipartimento di Scienze Cliniche e Sperimentali, , Università degli Studi di Brescia, ; Brescia, Italy
                Article
                30912
                10.1038/s41598-018-30912-w
                6102263
                30127390
                9dfd7be0-d4d4-41b5-8476-56ba4c74e3f2
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 11 May 2018
                : 1 August 2018
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100007343, Universit&amp;#x00E0; degli Studi di Brescia (University of Brescia);
                Award ID: PHOENICS
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article