7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Improved Automated Detection of Subpixel-Scale Inundation—Revised Dynamic Surface Water Extent (DSWE) Partial Surface Water Tests

      Remote Sensing
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In order to produce useful hydrologic and aquatic habitat data from the Landsat system, the U.S. Geological Survey has developed the “Dynamic Surface Water Extent” (DSWE) Landsat Science Product. DSWE will provide long-term, high-temporal resolution data on variations in inundation extent. The model used to generate DSWE is composed of five decision-rule based tests that do not require scene-based training. To allow its general application, required inputs are limited to the Landsat at-surface reflectance product and a digital elevation model. Unlike other Landsat-based water products, DSWE includes pixels that are only partially covered by water to increase inundation dynamics information content. Previously published DSWE model development included one wetland-focused test developed through visual inspection of field-collected Everglades spectra. A comparison of that test’s output against Everglades Depth Estimation Network (EDEN) in situ data confirmed the expectation that omission errors were a prime source of inaccuracy in vegetated environments. Further evaluation exposed a tendency toward commission error in coniferous forests. Improvements to the subpixel level “partial surface water” (PSW) component of DSWE was the focus of this research. Spectral mixture models were created from a variety of laboratory and image-derived endmembers. Based on the mixture modeling, a more “aggressive” PSW rule improved accuracy in herbaceous wetlands and reduced errors of commission elsewhere, while a second “conservative” test provides an alternative when commission errors must be minimized. Replication of the EDEN-based experiments using the revised PSW tests yielded a statistically significant increase in mean overall agreement (4%, p = 0.01, n = 50) and a statistically significant decrease (11%, p = 0.009, n = 50) in mean errors of omission. Because the developed spectral mixture models included image-derived vegetation endmembers and laboratory spectra for soil groups found across the US, simulations suggest where the revised DSWE PSW tests perform as they do in the Everglades and where they may prove problematic. Visual comparison of DSWE outputs with an unusual variety of coincidently collected images for locations spread throughout the US support conclusions drawn from Everglades quantitative analyses and highlight DSWE PSW component strengths and weaknesses.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: not found
          • Article: not found

          Red and photographic infrared linear combinations for monitoring vegetation

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery

            Hanqiu Xu (2006)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High-resolution mapping of global surface water and its long-term changes.

              The location and persistence of surface water (inland and coastal) is both affected by climate and human activity and affects climate, biological diversity and human wellbeing. Global data sets documenting surface water location and seasonality have been produced from inventories and national descriptions, statistical extrapolation of regional data and satellite imagery, but measuring long-term changes at high resolution remains a challenge. Here, using three million Landsat satellite images, we quantify changes in global surface water over the past 32 years at 30-metre resolution. We record the months and years when water was present, where occurrence changed and what form changes took in terms of seasonality and persistence. Between 1984 and 2015 permanent surface water has disappeared from an area of almost 90,000 square kilometres, roughly equivalent to that of Lake Superior, though new permanent bodies of surface water covering 184,000 square kilometres have formed elsewhere. All continental regions show a net increase in permanent water, except Oceania, which has a fractional (one per cent) net loss. Much of the increase is from reservoir filling, although climate change is also implicated. Loss is more geographically concentrated than gain. Over 70 per cent of global net permanent water loss occurred in the Middle East and Central Asia, linked to drought and human actions including river diversion or damming and unregulated withdrawal. Losses in Australia and the USA linked to long-term droughts are also evident. This globally consistent, validated data set shows that impacts of climate change and climate oscillations on surface water occurrence can be measured and that evidence can be gathered to show how surface water is altered by human activities. We anticipate that this freely available data will improve the modelling of surface forcing, provide evidence of state and change in wetland ecotones (the transition areas between biomes), and inform water-management decision-making.
                Bookmark

                Author and article information

                Journal
                Remote Sensing
                Remote Sensing
                MDPI AG
                2072-4292
                February 2019
                February 13 2019
                : 11
                : 4
                : 374
                Article
                10.3390/rs11040374
                9e7da567-1361-4caa-9a4e-089e9f58162f
                © 2019

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article