21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Hexim1, a Novel Regulator of Leptin Function, Modulates Obesity and Glucose Disposal.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Leptin triggers signaling events with significant transcriptional responses that are essential to metabolic processes affecting obesity and glucose disposal. We asked whether hexamethylene bis-acetamide inducible-1 (Hexim1), an inhibitor of RNA II polymerase-dependent transcription elongation, regulates leptin-Janus kinase 2 signaling axis in the hypothalamus. We subjected C57BL6 Hexim1 heterozygous (HT) mice to high-fat diet and when compared with wild type, HT mice were resistant to high-fat diet-induced weight gain and remain insulin sensitive. HT mice exhibited increased leptin-pY(705)Stat3 signaling in the hypothalamus, with normal adipocyte size, increased type I oxidative muscle fiber density, and enhanced glucose transporter 4 expression. We also observed that normal Hexim1 protein level is required to facilitate the expression of CCAAT/enhancer-binding proteins (C/EBPs) required for adipogenesis and inducible suppressor of cytokine signaling 3 (SOCS) expression. Further support on the role of Hexim1 regulating C/EBPs during adipocyte differentiation was shown when HT 3T3L1 fibroblasts failed to undergo adipogenesis. Hexim1 selectively modulates leptin-mediated signal transduction pathways in the hypothalamus, the expression of C/EBPs and peroxisome proliferator-activated receptor-γ (PPAR γ) in skeletal muscle and adipose tissue during the adaptation to metabolic stress. We postulate that Hexim1 might be a novel factor involved in maintaining whole-body energy balance.

          Related collections

          Author and article information

          Journal
          Mol. Endocrinol.
          Molecular endocrinology (Baltimore, Md.)
          The Endocrine Society
          1944-9917
          0888-8809
          Mar 2016
          : 30
          : 3
          Affiliations
          [1 ] Department of Biological Sciences (M.D.-M., S.N.R.), State University of New York, College at Old Westbury, Old Westbury, New York 11568; Departments of Cell Biology (I.R., E.J.M.) and Surgery, Medicine, and Cell Biology (J.G.K.), State University of New York Downstate Medical Center, Brooklyn, New York 11203; and Institute Pasteur Inserm (Y.R.), Cenre National de la Recherche Scientifique, Center for Infection and Immunity of Lille, UMR8204, U1019, F-59021 Lille, France.
          Article
          10.1210/me.2015-1211
          4771697
          26859361
          9e93fee0-aecf-4275-8507-ad110a7f8ba0
          History

          Comments

          Comment on this article