20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The effects of Crataegus pinnatifida (Chinese hawthorn) on metabolic syndrome: A review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Metabolic syndrome is described as a group of risk factors in which at least three unhealthy medical conditions, including obesity, high blood sugar, hypertension or dyslipidemia occur simultaneously in a patient. These conditions raise the risk for diabetes mellitus and cardiovascular diseases. Many recent studies have focused on herbal remedies and their pharmacological effects on metabolic syndrome. Crataegus pinnatifida or Chinese hawthorn has been widely used in the treatment of hyperlipidemia and cardiovascular diseases. Its leaves, fruits and seeds have various active substances such as, flavonoids, triterpenic acids and sesquiterpenes, which through different mechanisms can be beneficial in metabolic syndrome. Flavonoids found in the leaves of hawthorn can significantly reduce atherosclerotic lesion areas, the fruit extracts contain two triterpenic acids (oleanolic acid and ursolic acid), that have the ability to inhibit the acyl-coA-cholesterol acyltransferase (ACAT) enzyme and as a result reduce very low-density lipoprotein (VLDL) and low-density lipoprotein (LDL) cholesterol levels. Another example regards a sesquiterpene found in the seeds of C. pinnatifida, which exhibits the ability to inhibit platelet aggregation, thus showing antithrombotic activity. Various studies have shown that C. pinnatifida can have beneficial effects on controlling and treating high blood sugar, dyslipidemia, obesity and atherosclerosis. The aim of this review is to highlight the interesting effects of C. pinnatifida on metabolic syndrome.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040.

          To produce current estimates of the national, regional and global impact of diabetes for 2015 and 2040.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Adipocyte and adipogenesis.

            Adipocytes are the main constituent of adipose tissue and are considered to be a corner stone in the homeostatic control of whole body metabolism. Their primary function is to control energy balance by storing triacylglycerol in periods of energy excess and mobilizing it during energy deprivation. Besides the classical function of storing fat, adipocytes secrete numerous lipid and protein factors. Collectively they are considered to constitute a major endocrine organ which has a profound impact on the metabolism of other tissues, the regulation of appetite, insulin sensitivity, immunological responses and vascular disease. Adipogenesis is the process during which fibroblast like preadipocytes developed into mature adipocytes. Adipogenesis is a well-orchestrated multistep process that requires the sequential activation of numerous transcription factors, including the CCAAT/enhancer-binding protein (C/EBP) gene family and peroxisome proliferator activated receptor-γ (PPAR-γ). In order to reach maturity, these cells must go through two vital steps: adipocyte determination and adipocyte differentiation. Although many of the molecular details of adipogenesis are still unknown, several factors involved in this processes have been identified. Some stimulators include peroxisome proliferator-activated receptor γ (PPAR γ), insulin-like growth factor I (IGF-l), macrophage colony stimulating factor, fatty acids, prostaglandins and glucocorticoids. Inhibitors include glycoproteins, transforming growth factor-β (TGF-β), inflammatory cytokines and growth hormone. Beside these factors, there are others for example age, gender and life style that may affect this process in one way or another. An increase in the number and size of adipocytes causes white adipose tissue (WAT) to expand and this can lead to obesity. Adipogenesis can lead to central obesity if it occurs in the abdominal fat depot and peripheral obesity if it occurs in subcutaneous tissue. Copyright © 2013 Elsevier GmbH. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              New drug targets for type 2 diabetes and the metabolic syndrome.

              D Moller (2001)
              An insidious increase in features of the 'metabolic syndrome' - obesity, insulin resistance and dyslipidaemia -- has conspired to produce a worldwide epidemic of type 2 insulin-resistant diabetes mellitus. Most current therapies for this disease were developed in the absence of defined molecular targets or an understanding of disease pathogenesis. Emerging knowledge of key pathogenic mechanisms, such as the impairment of glucose-stimulated insulin secretion and the role of 'lipotoxicity' as a probable cause of hepatic and muscle resistance to insulin's effects on glucose metabolism, has led to a host of new molecular drug targets. Several have been validated through genetic engineering in mice or the preliminary use of lead compounds and therapeutic agents in animals and humans.
                Bookmark

                Author and article information

                Journal
                Iran J Basic Med Sci
                Iran J Basic Med Sci
                ijbms
                Iranian Journal of Basic Medical Sciences
                Mashhad University of Medical Sciences (Mashhad, Iran )
                2008-3866
                2008-3874
                May 2019
                : 22
                : 5
                : 460-468
                Affiliations
                [1 ]Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
                [2 ]Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
                Author notes
                [* ]Corresponding author: Hossein Hosseinzadeh. Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran Tel: +98-51-31801193; Fax: +98-51-38823251; Email: hosseinzadehh@mums.ac.ir
                Article
                10.22038/IJBMS.2019.31964.7678
                6556496
                31217924
                9eb9dc78-107c-4ee9-9d11-7636cc3f16bd

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License, ( http://creativecommons.org/licenses/by/3.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 17 May 2018
                : 28 October 2018
                Categories
                Review Article

                crataegus pinnatifida,diabetes,dyslipidemia,hawthorn,metabolic syndrome,obesity

                Comments

                Comment on this article