22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The iron chelator deferasirox induces apoptosis by targeting oncogenic Pyk2/β-catenin signaling in human multiple myeloma

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Deregulated iron metabolism underlies the pathogenesis of many human cancers. Recently, low expression of ferroportin, which is the only identified non-heme iron exporter, has been associated with significantly reduced overall survival in multiple myeloma (MM); however, the altered iron metabolism in MM biology remains unclear. In this study we demonstrated, by live cell imaging, that MM cells have increased intracellular iron levels as compared with normal cells. In experiments to test the effect of iron chelation on the growth of MM cells, we found that deferasirox (DFX), an oral iron chelator used to treat iron overload in clinical practice, inhibits MM cell growth both in vivo and in vitro. Mechanistically, DFX was found to induce apoptosis of MM cells via the inhibition of proline-rich tyrosine kinase 2 (Pyk2), which is known to promote tumor growth in MM. Inhibition of Pyk2 is caused by the suppression of reactive oxygen species, and leads to downregulation of the Wnt/β-catenin signaling pathway. Taken together, our findings indicate that high levels of intracellular iron, which might be due to low ferroportin expression, play a role in MM pathophysiology. Therefore, DFX may provide a therapeutic option for MM that is driven by deregulated iron homeostasis and/or Pyk2/Wnt signaling.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Iron and cancer: more ore to be mined.

          Iron is an essential nutrient that facilitates cell proliferation and growth. However, iron also has the capacity to engage in redox cycling and free radical formation. Therefore, iron can contribute to both tumour initiation and tumour growth; recent work has also shown that iron has a role in the tumour microenvironment and in metastasis. Pathways of iron acquisition, efflux, storage and regulation are all perturbed in cancer, suggesting that reprogramming of iron metabolism is a central aspect of tumour cell survival. Signalling through hypoxia-inducible factor (HIF) and WNT pathways may contribute to altered iron metabolism in cancer. Targeting iron metabolic pathways may provide new tools for cancer prognosis and therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter.

            Defects in iron absorption and utilization lead to iron deficiency and overload disorders. Adult mammals absorb iron through the duodenum, whereas embryos obtain iron through placental transport. Iron uptake from the intestinal lumen through the apical surface of polarized duodenal enterocytes is mediated by the divalent metal transporter, DMTi. A second transporter has been postulated to export iron across the basolateral surface to the circulation. Here we have used positional cloning to identify the gene responsible for the hypochromic anaemia of the zebrafish mutant weissherbst. The gene, ferroportin1, encodes a multiple-transmembrane domain protein, expressed in the yolk sac, that is a candidate for the elusive iron exporter. Zebrafish ferroportin1 is required for the transport of iron from maternally derived yolk stores to the circulation and functions as an iron exporter when expressed in Xenopus oocytes. Human Ferroportin1 is found at the basal surface of placental syncytiotrophoblasts, suggesting that it also transports iron from mother to embryo. Mammalian Ferroportin1 is expressed at the basolateral surface of duodenal enterocytes and could export cellular iron into the circulation. We propose that Ferroportin1 function may be perturbed in mammalian disorders of iron deficiency or overload.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A class of iron chelators with a wide spectrum of potent antitumor activity that overcomes resistance to chemotherapeutics.

              Novel chemotherapeutics with marked and selective antitumor activity are essential to develop, particularly those that can overcome resistance to established therapies. Iron (Fe) is critical for cell-cycle progression and DNA synthesis and potentially represents a novel molecular target for the design of new anticancer agents. The aim of this study was to evaluate the antitumor activity and Fe chelation efficacy of a new class of Fe chelators using human tumors. In this investigation, the ligands showed broad antitumor activity and could overcome resistance to established antitumor agents. The in vivo efficacy of the most effective chelator identified, di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone (Dp44mT), was assessed by using a panel of human xenografts in nude mice. After 7 weeks, net growth of a melanoma xenograft in Dp44mT-treated mice was only 8% of that in mice treated with vehicle. In addition, no differences in these latter animals were found in hematological indices between Dp44mT-treated mice and controls. No marked systemic Fe depletion was observed comparing Dp44mT- and vehicle-treated mice, probably because of the very low doses required to induce anticancer activity. Dp44mT caused up-regulation of the Fe-responsive tumor growth and metastasis suppressor Ndrg1 in the tumor but not in the liver, indicating a potential mechanism of selective anticancer activity. These results indicate that the novel Fe chelators have potent and broad antitumor activity and can overcome resistance to established chemotherapeutics because of their unique mechanism of action.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                27 September 2016
                2 September 2016
                : 7
                : 39
                : 64330-64341
                Affiliations
                1 Department of Medical Oncology and Hematology, Sapporo Medical University School of Medicine, Japan
                Author notes
                Correspondence to: Junji Kato, jkato@ 123456sapmed.ac.jp
                Article
                11830
                10.18632/oncotarget.11830
                5325446
                27602957
                9edaffed-0e7d-4ff6-9cd5-f96688a0a6c5
                Copyright: © 2016 Kamihara et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 6 October 2015
                : 21 August 2016
                Categories
                Research Paper

                Oncology & Radiotherapy
                deferasirox,pyk2,β-catenin,apoptosis,multiple myeloma
                Oncology & Radiotherapy
                deferasirox, pyk2, β-catenin, apoptosis, multiple myeloma

                Comments

                Comment on this article