143
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cisplatin Induces a Mitochondrial-ROS Response That Contributes to Cytotoxicity Depending on Mitochondrial Redox Status and Bioenergetic Functions

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cisplatin is one of the most effective and widely used anticancer agents for the treatment of several types of tumors. The cytotoxic effect of cisplatin is thought to be mediated primarily by the generation of nuclear DNA adducts, which, if not repaired, cause cell death as a consequence of DNA replication and transcription blockage. However, the ability of cisplatin to induce nuclear DNA (nDNA) damage per se is not sufficient to explain its high degree of effectiveness nor the toxic effects exerted on normal, post-mitotic tissues. Oxidative damage has been observed in vivo following exposure to cisplatin in several tissues, suggesting a role for oxidative stress in the pathogenesis of cisplatin-induced dose-limiting toxicities. However, the mechanism of cisplatin-induced generation of ROS and their contribution to cisplatin cytotoxicity in normal and cancer cells is still poorly understood. By employing a panel of normal and cancer cell lines and the budding yeast Saccharomyces cerevisiae as model system, we show that exposure to cisplatin induces a mitochondrial-dependent ROS response that significantly enhances the cytotoxic effect caused by nDNA damage. ROS generation is independent of the amount of cisplatin-induced nDNA damage and occurs in mitochondria as a consequence of protein synthesis impairment. The contribution of cisplatin-induced mitochondrial dysfunction in determining its cytotoxic effect varies among cells and depends on mitochondrial redox status, mitochondrial DNA integrity and bioenergetic function. Thus, by manipulating these cellular parameters, we were able to enhance cisplatin cytotoxicity in cancer cells. This study provides a new mechanistic insight into cisplatin-induced cell killing and may lead to the design of novel therapeutic strategies to improve anticancer drug efficacy.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species.

          c-Jun N-terminal kinase (JNK), or stress-activated protein kinase, is an important member of the mitogen-activated protein kinase superfamily, the members of which are readily activated by many environmental stimuli. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are important groups of free radicals that are capable of eliciting direct damaging effects or acting as critical intermediate signaling molecules, leading to oxidative and nitrosative stress and a series of biological consequences. Recently there has been an increasing amount of research interest focusing on the regulatory role of JNK activation in ROS-and RNS-induced cellular responses. In this review we will first summarize and discuss some recent findings regarding the signaling mechanisms of ROS-or RNS-mediated JNK activation. Second, we will talk about the role of JNK in ROS-or RNS-mediated cell death (both apoptosis and necrosis). Finally, we will analyze the emerging evidence for the involvement of ROS and RNS as mediators in tumor necrosis factor alpha-induced apoptosis. Taken together, the accumulating knowledge about the ROS/RNS-induced JNK signaling pathway has greatly advanced our understanding of the complex processes deciding the cellular responses to environmental stress.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            American Society of Clinical Oncology Clinical Practice Guideline update on chemotherapy for stage IV non-small-cell lung cancer.

            The purpose of this article is to provide updated recommendations for the treatment of patients with stage IV non-small-cell lung cancer. A literature search identified relevant randomized trials published since 2002. The scope of the guideline was narrowed to chemotherapy and biologic therapy. An Update Committee reviewed the literature and made updated recommendations. One hundred sixty-two publications met the inclusion criteria. Recommendations were based on treatment strategies that improve overall survival. Treatments that improve only progression-free survival prompted scrutiny of toxicity and quality of life. For first-line therapy in patients with performance status of 0 or 1, a platinum-based two-drug combination of cytotoxic drugs is recommended. Nonplatinum cytotoxic doublets are acceptable for patients with contraindications to platinum therapy. For patients with performance status of 2, a single cytotoxic drug is sufficient. Stop first-line cytotoxic chemotherapy at disease progression or after four cycles in patients who are not responding to treatment. Stop two-drug cytotoxic chemotherapy at six cycles even in patients who are responding to therapy. The first-line use of gefitinib may be recommended for patients with known epidermal growth factor receptor (EGFR) mutation; for negative or unknown EGFR mutation status, cytotoxic chemotherapy is preferred. Bevacizumab is recommended with carboplatin-paclitaxel, except for patients with certain clinical characteristics. Cetuximab is recommended with cisplatin-vinorelbine for patients with EGFR-positive tumors by immunohistochemistry. Docetaxel, erlotinib, gefitinib, or pemetrexed is recommended as second-line therapy. Erlotinib is recommended as third-line therapy for patients who have not received prior erlotinib or gefitinib. Data are insufficient to recommend the routine third-line use of cytotoxic drugs. Data are insufficient to recommend routine use of molecular markers to select chemotherapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Mitochondria as a Target of Environmental Toxicants

              Enormous strides have recently been made in our understanding of the biology and pathobiology of mitochondria. Many diseases have been identified as caused by mitochondrial dysfunction, and many pharmaceuticals have been identified as previously unrecognized mitochondrial toxicants. A much smaller but growing literature indicates that mitochondria are also targeted by environmental pollutants. We briefly review the importance of mitochondrial function and maintenance for health based on the genetics of mitochondrial diseases and the toxicities resulting from pharmaceutical exposure. We then discuss how the principles of mitochondrial vulnerability illustrated by those fields might apply to environmental contaminants, with particular attention to factors that may modulate vulnerability including genetic differences, epigenetic interactions, tissue characteristics, and developmental stage. Finally, we review the literature related to environmental mitochondrial toxicants, with a particular focus on those toxicants that target mitochondrial DNA. We conclude that the fields of environmental toxicology and environmental health should focus more strongly on mitochondria.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                19 November 2013
                : 8
                : 11
                : e81162
                Affiliations
                [1 ]Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia, United States of America
                [2 ]Department of Medical Oncology, University of Messina, Messina, Italy
                [3 ]Department of Biochemistry, Emory University, Atlanta, Georgia, United States of America
                [4 ]Geisiner Medical Center, Danville, Pennsylvania, United States of America
                [5 ]Department of Radiation Oncology, Emory University, Atlanta, Georgia, United States of America
                University of Pittsburgh, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: RM EW ND PWD BM. Performed the experiments: RM. Analyzed the data: RM EW ND PWD SSR GA. Wrote the manuscript: RM EW ND PWD SSR GA.

                Article
                PONE-D-13-18015
                10.1371/journal.pone.0081162
                3834214
                24260552
                9ef35efd-c1d5-4170-92b1-59b608447057
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 3 May 2013
                : 9 October 2013
                Funding
                This work was supported by NIEHS grant ES011163. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article